📄 rfc2598.txt
字号:
Jacobson, et al. Standards Track [Page 6]
RFC 2598 An Expedited Forwarding PHB June 1999
Appendix A: Example use of and experiences with the EF PHB
A.1 Virtual Leased Line Service
A VLL Service, also known as Premium service [2BIT], is quantified by
a peak bandwidth.
A.2 Experiences with its use in ESNET
A prototype of the VLL service has been deployed on DOE's ESNet
backbone. This uses weighted-round-robin queuing features of Cisco
75xx series routers to implement the EF PHB. The early tests have
been very successful and work is in progress to make the service
available on a routine production basis (see
ftp://ftp.ee.lbl.gov/talks/vj-doeqos.pdf and
ftp://ftp.ee.lbl.gov/talks/vj-i2qos-may98.pdf for details).
A.3 Simulation Results
A.3.1 Jitter variation
In section 2.2, we pointed out that a number of mechanisms might be
used to implement the EF PHB. The simplest of these is a priority
queue (PQ) where the arrival rate of the queue is strictly less than
its service rate. As jitter comes from the queuing delay along the
path, a feature of this implementation is that EF-marked microflows
will see very little jitter at their subscribed rate since packets
spend little time in queues. The EF PHB does not have an explicit
jitter requirement but it is clear from the definition that the
expected jitter in a packet stream that uses a service based on the
EF PHB will be less with PQ than with best-effort delivery. We used
simulation to explore how weighted round-robin (WRR) compares to PQ
in jitter. We chose these two since they"re the best and worst cases,
respectively, for jitter and we wanted to supply rough guidelines for
EF implementers choosing to use WRR or similar mechanisms.
Our simulation model is implemented in a modified ns-2 described in
[RFC2415] and [LCN]. We used the CBQ modules included with ns-2 as a
basis to implement priority queuing and WRR. Our topology has six
hops with decreasing bandwidth in the direction of a single 1.5 Mbps
bottleneck link (see figure 6). Sources produce EF-marked packets at
an average bit rate equal to their subscribed packet rate. Packets
are produced with a variation of +-10% from the interpacket spacing
at the subscribed packet rate. The individual source rates were
picked aggregate to 30% of the bottleneck link or 450 Kbps. A mixture
of FTPs and HTTPs is then used to fill the link. Individual EF packet
sources produce either all 160 byte packets or all 1500 byte packets.
Jacobson, et al. Standards Track [Page 7]
RFC 2598 An Expedited Forwarding PHB June 1999
Though we present the statistics of flows with one size of packet,
all of the experiments used a mixture of short and long packet EF
sources so the EF queues had a mix of both packet lengths.
We defined jitter as the absolute value of the difference between the
arrival times of two adjacent packets minus their departure times,
|(aj-dj) - (ai-di)|. For the target flow of each experiment, we
record the median and 90th percentile values of jitter (expressed as
% of the subscribed EF rate) in a table. The pdf version of this
document contains graphs of the jitter percentiles.
Our experiments compared the jitter of WRR and PQ implementations of
the EF PHB. We assessed the effect of different choices of WRR queue
weight and number of queues on jitter. For WRR, we define the
service-to-arrival rate ratio as the service rate of the EF queue (or
the queue"s minimum share of the output link) times the output link
bandwidth divided by the peak arrival rate of EF-marked packets at
the queue. Results will not be stable if the WRR weight is chosen to
exactly balance arrival and departure rates thus we used a minimum
service-to-arrival ratio of 1.03. In our simulations this means that
the EF queue gets at least 31% of the output links. In WRR
simulations we kept the link full with other traffic as described
above, splitting the non-EF-marked traffic among the non-EF queues.
(It should be clear from the experiment description that we are
attempting to induce worst-case jitter and do not expect these
settings or traffic to represent a "normal" operating point.)
Our first set of experiments uses the minimal service-to-arrival
ratio of 1.06 and we vary the number of individual microflows
composing the EF aggregate from 2 to 36. We compare these to a PQ
implementation with 24 flows. First, we examine a microflow at a
subscribed rate of 56 Kbps sending 1500 byte packets, then one at the
same rate but sending 160 byte packets. Table 1 shows the 50th and
90th percentile jitter in percent of a packet time at the subscribed
rate. Figure 1 plots the 1500 byte flows and figure 2 the 160 byte
flows. Note that a packet-time for a 1500 byte packet at 56 Kbps is
214 ms, for a 160 byte packet 23 ms. The jitter for the large packets
rarely exceeds half a subscribed rate packet-time, though most
jitters for the small packets are at least one subscribed rate
packet-time. Keep in mind that the EF aggregate is a mixture of small
and large packets in all cases so short packets can wait for long
packets in the EF queue. PQ gives a very low jitter.
Table 1: Variation in jitter with number of EF flows: Service/arrival
ratio of 1.06 and subscription rate of 56 Kbps (all values given as %
of subscribed rate)
Jacobson, et al. Standards Track [Page 8]
RFC 2598 An Expedited Forwarding PHB June 1999
1500 byte pack. 160 byte packet
# EF flows 50th % 90th % 50th % 90th %
PQ (24) 1 5 17 43
2 11 47 96 513
4 12 35 100 278
8 10 25 96 126
24 18 47 96 143
Next we look at the effects of increasing the service-to-arrival
ratio. This means that EF packets should remain enqueued for less
time though the bandwidth available to the other queues remains the
same. In this set of experiments the number of flows in the EF
aggregate was fixed at eight and the total number of queues at five
(four non-EF queues). Table 2 shows the results for 1500 and 160 byte
flows. Figures 3 plots the 1500 byte results and figure 4 the 160
byte results. Performance gains leveled off at service-to-arrival
ratios of 1.5. Note that the higher service-to-arrival ratios do not
give the same performance as PQ, but now 90% of packets experience
less than a subscribed packet-time of jitter even for the small
packets.
Table 2: Variation in Jitter of EF flows: service/arrival ratio
varies, 8 flow aggregate, 56 Kbps subscribed rate
WRR 1500 byte pack. 160 byte packet
Ser/Arr 50th % 90th % 50th % 90th %
PQ 1 3 17 43
1.03 14 27 100 178
1.30 7 21 65 113
1.50 5 13 57 104
1.70 5 13 57 100
2.00 5 13 57 104
3.00 5 13 57 100
Increasing the number of queues at the output interfaces can lead to
more variability in the service time for EF packets so we carried out
an experiment varying the number of queues at each output port. We
fixed the number of flows in the aggregate to eight and used the
minimal 1.03 service-to-arrival ratio. Results are shown in figure 5
and table 3. Figure 5 includes PQ with 8 flows as a baseline.
Jacobson, et al. Standards Track [Page 9]
RFC 2598 An Expedited Forwarding PHB June 1999
Table 3: Variation in Jitter with Number of Queues at Output
Interface: Service-to-arrival ratio is 1.03, 8 flow aggregate
# EF 1500 byte packet
flows 50th % 90th %
PQ (8) 1 3
2 7 21
4 7 21
6 8 22
8 10 23
It appears that most jitter for WRR is low and can be reduced by a
proper choice of the EF queue's WRR share of the output link with
respect to its subscribed rate. As noted, WRR is a worst case while
PQ is the best case. Other possibilities include WFQ or CBQ with a
fixed rate limit for the EF queue but giving it priority over other
queues. We expect the latter to have performance nearly identical
with PQ though future simulations are needed to verify this. We have
not yet systematically explored effects of hop count, EF allocations
other than 30% of the link bandwidth, or more complex topologies. The
information in this section is not part of the EF PHB definition but
provided simply as background to guide implementers.
A.3.2 VLL service
We used simulation to see how well a VLL service built from the EF
PHB behaved, that is, does it look like a `leased line' at the
subscribed rate. In the simulations of the last section, none of the
EF packets were dropped in the network and the target rate was always
achieved for those CBR sources. However, we wanted to see if VLL
really looks like a `wire' to a TCP using it. So we simulated long-
lived FTPs using a VLL service. Table 4 gives the percentage of each
link allocated to EF traffic (bandwidths are lower on the links with
fewer EF microflows), the subscribed VLL rate, the average rate for
the same type of sender-receiver pair connected by a full duplex
dedicated link at the subscribed rate and the average of the VLL
flows for each simulation (all sender-receiver pairs had the same
value). Losses only occur when the input shaping buffer overflows but
not in the network. The target rate is not achieved due to the
well-known TCP behavior.
Table 4: Performance of FTPs using a VLL service
% link Average delivered rate (Kbps)
to EF Subscribed Dedicated VLL
20 100 90 90
40 150 143 143
60 225 213 215
Jacobson, et al. Standards Track [Page 10]
RFC 2598 An Expedited Forwarding PHB June 1999
Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Jacobson, et al. Standards Track [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -