📄 rfc1621.txt
字号:
take advantage of the hierarchical source address, as is being done
with IP. The Dest ID field holds the multicast group. The Routing
Context indicates Class-D style multicast. All routers must first
look at the FTIF Chain and Dest ID field to route the packet on the
tree.
Bits 2 through 5 of the RC are the scoping bits.
4.4 Anycast Addressing
When bits 1 and 0 of the RC defined by RC Contents = 1 are set to 11,
the FTIF and Dest ID indicate Anycast addressing. The remainder of
the RC is defined as:
Francis [Page 16]
RFC 1621 Pip Near-term Architecture May 1994
bits meaning
---- -------
0,1 Anycast Address (= 11)
2,3 level
4,5 metalevel
6 exit routing type
7 anycast active
8,9 scoping
With anycast routing, the packet is unicast, but to the nearest of a
group of destinations. This type of routing is used by Pip for
autoconfiguration. Other applications, such as discovery protocols,
may also use anycast routing.
Like CBT, Pip anycast has two phases of operation, in this case the
unicast phase and the anycast phase. The unicast phase is for the
purpose of getting the packet into a certain vicinity. The anycast
phase is to forward the packet to the nearest of a group of
destinations in that vicinity.
Thus, the RC has both unicast and anycast information in it. During
the unicast phase, the anycast active bit is set to 0, and the packet
is forwarded according to the rules of Pip Addressing. The scoping
bits are ignored.
The switch from the unicast phase to the anycast phase is triggered
by the presence of an FTIF of value 1 in the FTIF Chain. When this
FTIF is reached, the anycast active bit is set to 1, the scoping bits
take effect, and bits 2 through 6 are ignored. When in the anycast
phase, forwarding is based on the Dest ID field.
5. Pip IDs
The Pip ID is 64-bits in length [4].
The basic role of the Pip ID is to identify the source and
destination host of a Pip Packet. (The other role of the Pip ID is
for allowing a router to find the destination host on the destination
subnetwork.)
This having been said, it is possible for the Pip ID to ultimately
identify something in addition to the host. For instance, the Pip ID
could identify a user or a process. For this to work, however, the
Pip ID has to be bound to the host, so that as far as the Pip layer
is concerned, the ID is that of the host. Any additional use of the
Pip ID is outside the scope of this Pip architecture.
Francis [Page 17]
RFC 1621 Pip Near-term Architecture May 1994
The Pip ID is treated as flat. When a host receives a Pip packet, it
compares the destination Pip ID in the Pip header with its' own. If
there is a complete match, then the packet has reached the correct
destination, and is sent to the higher layer protocol. If there is
not a complete match, then the packet is discarded, and a PCMP
Invalid Address packet is returned to the originator of the packet
[7].
It is something of an open issue as to whether or not Pip IDs should
contain significant organizational hierarchy information. Such
information could be used for inverse DNS lookups and allowing a Pip
packet to be associated with an organization. (Note that the use of
the Pip ID alone for this purpose can be easily spoofed. By cross
checking the Pip ID with the Pip Address prefix, spoofing is harder-
-as hard as it is with IP--but still easy. Section 14.2 discusses
methods for making spoofing harder still, without requiring
encryption.)
However, relying on organizational information in the Pip header
generally complicates ID assignment. This complication has several
ramifications. It makes host autoconfiguration of hosts harder,
because hosts then have to obtain an assignment from some database
somewhere (versus creating one locally from an IEEE 802 address, for
instance). It means that a host has to get a new assignment if it
changes organizations. It is not clear what the ramifications of
this might be in the case of a mobile host moving through different
organizations.
Because of these difficulties, the use of flat Pip IDs is currently
favored.
Blocks of Pip ID numbers have been reserved for existing numbering
spaces, such as IP, IEEE 802, and E.164. Pip ID numbers have been
assigned for such special purposes such as "any host", "any router",
"all hosts on a subnetwork", "all routers on a subnetwork", and so
on. Finally, 32-bit blocks of Pip ID numbers have been reserved for
each country, according to ISO 3166 country code assignments.
6. Use of DNS
The Pip near-term architecture uses DNS in roughly the same style
that it is currently used. In particular, the Pip architecture
maintains the two fundamental DNS characteristics of 1) information
stored in DNS does not change often, and 2) the information returned
by DNS is independent of who requested it.
While the fundamental use of DNS remains roughly the same, Pip's use
of DNS differs from IP's use by degrees. First, Pip relies on DNS to
Francis [Page 18]
RFC 1621 Pip Near-term Architecture May 1994
hold more types of information than IP [1]. Second, Pip Addresses in
DNS are expected to change more often than IP addresses, due to
reassignment of Pip Address prefixes (the providerPart). To still
allow aggressive caching of DNS records in the face of more quickly
changing addressing, Pip has a mechanism of indicating to hosts when
an address is no longer assigned. This triggers an authoritative
query, which overrides DNS caches. The mechanism consists of PCMP
Packet Not Delivered messages that indicate explicitly that the Pip
Address is invalid.
In what follows, we first discuss the information contained in DNS,
and then discuss authoritative queries.
6.1 Information Held by DNS
The information contained in DNS for the Pip architecture is:
1. The Pip ID.
2. Multiple Pip Addresses
3. The destination's mobile host address servers.
4. The Public Data Network (PDN) addresses through which the
destination can be reached.
5. The Pip/IP Translators through which the destination (if the
destination is IP-only) can be reached.
6. Information about the providers represented by the destination's
Pip addresses. This information includes provider name, the type
of provider network (such as SMDS, ATM, or SIP), and access
restrictions on the provider's network.
The Pip ID and Addresses are the basic units of information required
for carriage of a Pip packet.
The mobile host address server tells where to send queries for the
current address of a mobile Pip host. Note that usually the current
address of the mobile host is conveyed by the mobile host itself,
thus a mobile host server query is not usually required.
The PDN address is used by the entry router of a PDN to learn the PDN
address of the next hop router. The entry router obtains the PDN
address via an option in the Pip packet. If there are multiple PDNs
associated with a given Pip Address, then there can be multiple PDN
addresses carried in the option. Note that the option is not sent on
every packet, and that only the PDN entry router need examine the
Francis [Page 19]
RFC 1621 Pip Near-term Architecture May 1994
option.
The Pip/IP translator information is used to know how to translate an
IP address into a Pip Address so that the packet can be carried
across the Pip infrastructure. If the originating host is IP, then
the first IP/Pip translator reached by the IP packet must query DNS
for this information.
The information about the destination's providers is used to help the
"source" (either the source host or a Pip Header Server near the
source host) format an appropriate Pip header with regards to
choosing a Pip Address [14]. The choice of one of multiple Pip
Addresses is essentially a policy routing choice.
More detailed descriptions of the use of the information carried in
DNS is contained in the relevant sections.
6.2 Authoritative Queries in DNS
In general, Pip treats addresses as more dynamic entities than does
IP. One example of this is how Pip Address prefixes change when a
subscriber network attaches to a new provider. Pip also carries more
information in DNS, any of which can change for various reasons.
Thus, the information in DNS is more dynamic with Pip than with IP.
Because of the increased reliance on DNS, there is a danger of
increasing the load on DNS. This would be particularly true if the
means of increasing DNS' dynamicity is by shortening the cache
holding time by decreasing the DNS Time-to-Live (TTL). To counteract
this trend, Pip provides explicit network layer (Pip layer) feedback
on the correctness of address information. This allows Pip hosts to
selectively over-ride cached DNS information by making an
authoritative query. Through this mechanism, we actually hope to
increase the cache holding time of DNS, thus improving DNS' scaling
characteristics overall.
The network layer feedback is in the form of a type of PCMP Packet
Not Delivered (PDN) message that indicates that the address used is
known to be out-of-date. Routers can be configured with this
information, or it can be provided through the routing algorithm
(when an address is decommissioned, the routing algorithm can
indicate that this is the reason that it has become unreachable, as
opposed to becoming "temporarily" unreachable through equipment
failure).
Pip hosts consider destination addresses to be in one of four states:
Francis [Page 20]
RFC 1621 Pip Near-term Architecture May 1994
1. Unknown, but assumed to be valid.
2. Reachable (and therefore valid).
3. Unreachable and known to be invalid.
4. Unreachable, but weakly assumed to be valid.
The first state exists before a host has attempted communication with
another host. In this state, the host queries DNS as normal (that
is, does not make an authoritative query).
The second state is reached when a host has successfully communicated
with another host. Once a host has reached this state, it can stay
in it for an arbitrarily long time, including after the DNS TTL has
expired. When in this state, there is no need to query DNS.
A host enters the third state after a failed attempt at communicating
with another host where the PCMP PND message indicates explicitly
that the address is known to be invalid. In this case, the host
makes an authoritative query to DNS whether or not the TTL has
expired. It is this case that allows lengthy caching of DNS
information while still allowing addresses to be reassigned
frequently.
A host enters the fourth state after a failed attempt at
communicating with another host, but where the address is not
explicitly known to be invalid. In this state, the host weakly
assumes that the address of the destination is still valid, and so
can requery DNS with a normal (non-authoritative) query.
7. Type-of-Service (TOS) (or lack thereof)
One year ago it probably would have been adequate to define a handful
(4 or 5) of priority levels to drive a simple priority FIFO queue.
With the advent of real-time services over the Internet, however,
this is no longer sufficient. Real-time traffic cannot be handled on
the same footing as non-real-time. In particular, real-time traffic
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -