📄 rfc1106.txt
字号:
Network Working Group R. Fox
Request for Comments: 1106 Tandem
June 1989
TCP Big Window and Nak Options
Status of this Memo
This memo discusses two extensions to the TCP protocol to provide a
more efficient operation over a network with a high bandwidth*delay
product. The extensions described in this document have been
implemented and shown to work using resources at NASA. This memo
describes an Experimental Protocol, these extensions are not proposed
as an Internet standard, but as a starting point for further
research. Distribution of this memo is unlimited.
Abstract
Two extensions to the TCP protocol are described in this RFC in order
to provide a more efficient operation over a network with a high
bandwidth*delay product. The main issue that still needs to be
solved is congestion versus noise. This issue is touched on in this
memo, but further research is still needed on the applicability of
the extensions in the Internet as a whole infrastructure and not just
high bandwidth*delay product networks. Even with this outstanding
issue, this document does describe the use of these options in the
isolated satellite network environment to help facilitate more
efficient use of this special medium to help off load bulk data
transfers from links needed for interactive use.
1. Introduction
Recent work on TCP has shown great performance gains over a variety
of network paths [1]. However, these changes still do not work well
over network paths that have a large round trip delay (satellite with
a 600 ms round trip delay) or a very large bandwidth
(transcontinental DS3 line). These two networks exhibit a higher
bandwidth*delay product, over 10**6 bits, than the 10**5 bits that
TCP is currently limited to. This high bandwidth*delay product
refers to the amount of data that may be unacknowledged so that all
of the networks bandwidth is being utilized by TCP. This may also be
referred to as "filling the pipe" [2] so that the sender of data can
always put data onto the network and the receiver will always have
something to read, and neither end of the connection will be forced
to wait for the other end.
After the last batch of algorithm improvements to TCP, performance
Fox [Page 1]
RFC 1106 TCP Big Window and Nak Options June 1989
over high bandwidth*delay networks is still very poor. It appears
that no algorithm changes alone will make any significant
improvements over high bandwidth*delay networks, but will require an
extension to the protocol itself. This RFC discusses two possible
options to TCP for this purpose.
The two options implemented and discussed in this RFC are:
1. NAKs
This extension allows the receiver of data to inform the sender
that a packet of data was not received and needs to be resent.
This option proves to be useful over any network path (both high
and low bandwidth*delay type networks) that experiences periodic
errors such as lost packets, noisy links, or dropped packets due
to congestion. The information conveyed by this option is
advisory and if ignored, does not have any effect on TCP what so
ever.
2. Big Windows
This option will give a method of expanding the current 16 bit (64
Kbytes) TCP window to 32 bits of which 30 bits (over 1 gigabytes)
are allowed for the receive window. (The maximum window size
allowed in TCP due to the requirement of TCP to detect old data
versus new data. For a good explanation please see [2].) No
changes are required to the standard TCP header [6]. The 16 bit
field in the TCP header that is used to convey the receive window
will remain unchanged. The 32 bit receive window is achieved
through the use of an option that contains the upper half of the
window. It is this option that is necessary to fill large data
pipes such as a satellite link.
This RFC is broken up into the following sections: section 2 will
discuss the operation of the NAK option in greater detail, section 3
will discuss the big window option in greater detail. Section 4 will
discuss other effects of the big windows and nak feature when used
together. Included in this section will be a brief discussion on the
effects of congestion versus noise to TCP and possible options for
satellite networks. Section 5 will be a conclusion with some hints
as to what future development may be done at NASA, and then an
appendix containing some test results is included.
2. NAK Option
Any packet loss in a high bandwidth*delay network will have a
catastrophic effect on throughput because of the simple
acknowledgement of TCP. TCP always acks the stream of data that has
Fox [Page 2]
RFC 1106 TCP Big Window and Nak Options June 1989
successfully been received and tells the sender the next byte of data
of the stream that is expected. If a packet is lost and succeeding
packets arrive the current protocol has no way of telling the sender
that it missed one packet but received following packets. TCP
currently resends all of the data over again, after a timeout or the
sender suspects a lost packet due to a duplicate ack algorithm [1],
until the receiver receives the lost packet and can then ack the lost
packet as well as succeeding packets received. On a normal low
bandwidth*delay network this effect is minimal if the timeout period
is set short enough. However, on a long delay network such as a T1
satellite channel this is catastrophic because by the time the lost
packet can be sent and the ack returned the TCP window would have
been exhausted and both the sender and receiver would be temporarily
stalled waiting for the packet and ack to fully travel the data pipe.
This causes the pipe to become empty and requires the sender to
refill the pipe after the ack is received. This will cause a minimum
of 3*X bandwidth loss, where X is the one way delay of the medium and
may be much higher depending on the size of the timeout period and
bandwidth*delay product. Its 1X for the packet to be resent, 1X for
the ack to be received and 1X for the next packet being sent to reach
the destination. This calculation assumes that the window size is
much smaller than the pipe size (window = 1/2 data pipe or 1X), which
is the typical case with the current TCP window limitation over long
delay networks such as a T1 satellite link.
An attempt to reduce this wasted bandwidth from 3*X was introduced in
[1] by having the sender resend a packet after it notices that a
number of consecutively received acks completely acknowledges already
acknowledged data. On a typical network this will reduce the lost
bandwidth to almost nil, since the packet will be resent before the
TCP window is exhausted and with the data pipe being much smaller
than the TCP window, the data pipe will not become empty and no
bandwidth will be lost. On a high delay network the reduction of
lost bandwidth is minimal such that lost bandwidth is still
significant. On a very noisy satellite, for instance, the lost
bandwidth is very high (see appendix for some performance figures)
and performance is very poor.
There are two methods of informing the sender of lost data.
Selective acknowledgements and NAKS. Selective acknowledgements have
been the object of research in a number of experimental protocols
including VMTP [3], NETBLT [4], and SatFTP [5]. The idea behind
selective acks is that the receiver tells the sender which pieces it
received so that the sender can resend the data not acked but already
sent once. NAKs on the other hand, tell the sender that a particular
packet of data needs to be resent.
There are a couple of disadvantages of selective acks. Namely, in
Fox [Page 3]
RFC 1106 TCP Big Window and Nak Options June 1989
some of the protocols mentioned above, the receiver waits a certain
time before sending the selective ack so that acks may be bundled up.
This delay can cause some wasted bandwidth and requires more complex
state information than the simple nak. Even if the receiver doesn't
bundle up the selective acks but sends them as it notices that
packets have been lost, more complex state information is needed to
determine which packets have been acked and which packets need to be
resent. With naks, only the immediate data needed to move the left
edge of the window is naked, thus almost completely eliminating all
state information.
The selective ack has one advantage over naks. If the link is very
noisy and packets are being lost close together, then the sender will
find out about all of the missing data at once and can send all of
the missing data out immediately in an attempt to move the left
window edge in the acknowledge number of the TCP header, thus keeping
the data pipe flowing. Whereas with naks, the sender will be
notified of lost packets one at a time and this will cause the sender
to process extra packets compared to selective acks. However,
empirical studies has shown that most lost packets occur far enough
apart that the advantage of selective acks over naks is rarely seen.
Also, if naks are sent out as soon as a packet has been determined
lost, then the advantage of selective acks becomes no more than
possibly a more aesthetic algorithm for handling lost data, but
offers no gains over naks as described in this paper. It is this
reason that the simplicity of naks was chosen over selective acks for
the current implementation.
2.1 Implementation details
When the receiver of data notices a gap between the expected sequence
number and the actual sequence number of the packet received, the
receiver can assume that the data between the two sequence numbers is
either going to arrive late or is lost forever. Since the receiver
can not distinguish between the two events a nak should be sent in
the TCP option field. Naking a packet still destined to arrive has
the effect of causing the sender to resend the packet, wasting one
packets worth of bandwidth. Since this event is fairly rare, the
lost bandwidth is insignificant as compared to that of not sending a
nak when the packet is not going to arrive. The option will take the
form as follows:
+========+=========+=========================+================+
+option= + length= + sequence number of + number of +
+ A + 7 + first byte being naked + segments naked +
+========+=========+=========================+================+
This option contains the first sequence number not received and a
Fox [Page 4]
RFC 1106 TCP Big Window and Nak Options June 1989
count of how many segments of bytes needed to be resent, where
segments is the size of the current TCP MSS being used for the
connection. Since a nak is an advisory piece of information, the
sending of a nak is unreliable and no means for retransmitting a nak
is provided at this time.
When the sender of data receives the option it may either choose to
do nothing or it will resend the missing data immediately and then
continue sending data where it left off before receiving the nak.
The receiver will keep track of the last nak sent so that it will not
repeat the same nak. If it were to repeat the same nak the protocol
could get into the mode where on every reception of data the receiver
would nak the first missing data frame. Since the data pipe may be
very large by the time the first nak is read and responded to by the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -