📄 rfc2126.txt
字号:
Actions
N-CONNECT.REQUEST
- a NS-user indicates that it wants to establish a network
connection
N-CONNECT.RESPONSE
- a NS-user indicates that it will honour the request
N-DISCONNECT.REQUEST
- a NS-user indicates that the network connection is to be
closed
N-DATA.REQUEST
- a NS-user sends data
N-EXPEDITED_DATA.REQUEST
- a NS-user sends "expedited" data
Events
N-CONNECT.INDICATION
- a NS-user is notified that a network connection establishment
is in progress
N-CONNECT.CONFIRMATION
- a NS-user is notified that the network connection has been
established
N-DISCONNECT.INDICATION
- a NS-user is notified that the network connection is closed
N-DATA.INDICATION
- a NS-user is notified that data can be read from the network
connection
N-EXPEDITED_DATA.INDICATION
- a NS-user is notified that expedited data can be read from
the connection
Pouffary & Young Standards Track [Page 7]
RFC 2126 ISO Transport on top of TCP March 1997
3.2.2 TCP Service primitives
The mapping between, ISO 8348 CONS primitives and TCP Service
primitives, defined in this document assumes that the TCP offers the
following service primitives:
Actions
TCP-LISTEN_PORT
- PASSIVE open on given port
TCP-OPEN_PORT
- ACTIVE open to the given port
TCP-READ_DATA
- data is read from the connection
TCP-SEND_DATA
- data is sent on the connection
TCP-CLOSE
- the connection is closed (pending data is sent)
Events
TCP-CONNECTED
- open succeeded (either ACTIVE or PASSIVE)
TCP-CONNECT_FAIL
- ACTIVE open failed
TCP-DATA_READY
- Data can be read from the connection
TCP-ERRORED
- the connection has errored and is now closed
TCP-CLOSED
- an orderly disconnection has started
3.2.3 Mapping TCP as a Network Service Provider
3.2.3.1 Network Connection Establishment
In order to perform a N-CONNECT.REQUEST action, the TS-Provider
performs a TCP-OPEN_PORT to the desired IPv4 or IPv6 address using
the selected TCP port. When the TCP signals either success or
failure, this results in an N-CONNECT.INDICATION action.
Pouffary & Young Standards Track [Page 8]
RFC 2126 ISO Transport on top of TCP March 1997
In order to await a N-CONNECT.INDICATION event, a server performs a
TCP-LISTEN_PORT to the selected TCP port. When a client successfully
connects to this port, the TCP-CONNECTED event occurs and an implicit
N-CONNECT.RESPONSE action is performed.
Mapping parameters between the TCP service and the ISO 8348 CONS
service is done as follow:
Network Service TCP
--------------- ---
CONNECTION ESTABLISHMENT
Called address server's IPv4 or IPv6 address
and TCP port number.
Calling address client's IPv4 or IPv6 address
all others parameters ignored
Please also refer to 'Notes to Implementors' section 6.1.
TCP port 102 is reserved for implementations conforming to this
specification. Use of any TCP port is conformant to this
specification.
3.2.3.2 Network Data Transfer
In order perform a N-DATA.REQUEST action, the TS-provider constructs
the desired transport protocol data unit (TPDU), encapsulates the
TPDU in a discrete unit called TPKT and uses the TCP-SEND_DATA
primitive. Please also refer to 'Notes to Implementors' section 6.2.
In order to trigger a N-DATA.INDICATION action, the TCP indicates
that data is ready through TCP-DATA_READY event and a TPKT is read
using the TCP-READ_DATA primitive.
Mapping parameters between the TCP service and the ISO 8348 CONS
service is done as follow:
Network Service TCP
--------------- ---
DATA TRANSFER
NS User Data (NSDU) DATA
Pouffary & Young Standards Track [Page 9]
RFC 2126 ISO Transport on top of TCP March 1997
3.2.3.3 Network Connection Release
In order to perform an N-DISCONNECT.REQUEST action, the TS-provider
simply closes the TCP connection through TCP-CLOSE primitive.
In order to trigger a N-DISCONNECT.INDICATION, the TCP indicates that
the connection has been closed through TCP-CLOSE event. If the TCP
connection has failed the TCP indicates that the connection has been
closed through TCP-ERRORED event, this trigger a N-
DISCONNECT.INDICATION.
Mapping parameters between the TCP service and the ISO 8348 CONS
service is done as follow:
Network Service TCP
--------------- ---
CONNECTION RELEASE
all parameters ignored
4. Transport Protocol Specification
ISO 8073 Transport Protocol Classes 0 and 2 are supported with
extensions as defined in each subsections below.
A Transport Protocol class is selected for a particular transport
connection based on the requirements of the TS-User.
ISO 8073 Transport Protocol exchanges information between peers in
discrete units of information called transport protocol data units
(TPDU). The protocol defined in this document encapsulates these
TPDUs in discrete units termed Packets (TPKT).
This document mandates the implementation of ISO 8073 Transport
Protocol options negotiation (which includes class negotiation).
Please refer to 'Notes to Implementors' section 6.3 with respect to
Class negotiation and to the 'Rationale' section 7. with respect to
Interoperability with RFC1006.
4.1 Class 0 over TCP
Class 0 provides the functions needed for connection establishment
with negotiation, data transfer with segmentation, and protocol error
reporting. It provides Transport Connection with flow control based
on that of the NS-provider (TCP). It provides Transport
Disconnection based on the NS-provider Disconnection.
Pouffary & Young Standards Track [Page 10]
RFC 2126 ISO Transport on top of TCP March 1997
Class 0 is suitable for data transfer with no Explicit Transport
Disconnection.
4.1.1 Connection Establishment
The principles used in connection establishment are based upon those
described in ISO 8073, with the following extensions:
- Connect Data may be exchanged using the user data fields
of Connect Request (CR) and Connect Confirm (CC) TPDUs
- Use of "Expedited Data Transfer Service" may be negotiated
using the negotiation mechanism specified in ISO 8073. The
default is to not use "Expedited Data Transfer Service".
- Non-standard TPDU size may be negotiated using the negotiation
mechanism specified in ISO 8073. The maximum TPDU size is 65531
octets. The Default maximum TPDU size is 65531 octets.
Please refer to 'Notes to Implementors' section 6.4.
4.1.2 Data Transfer
The elements of procedure used during transfer are based upon those
presented in ISO 8073, with the following extension:
- Expedited Data may be supported (if negotiated during connection
establishment) by sending the defined Expedited Data (ED) TPDU.
The ED TPDU is sent inband on the same TCP connection as all of the
other TPDUs.
To support Expedited Data a non-standard TPDU is defined. The format
used for the ED TPDU is nearly identical to the format for the Normal
Data (DT) TPDU. The only difference between ED TPDU and DT TPDU is
that the value used for the TPDU code is ED and not DT. The size of a
Expedited Data user data field is 1 to 16 octets.
For TPDU bit encoding please refer to 'Notes to Implementors' section
6.5.
4.1.3 Connection Release
The elements of procedure used during a connection release are
identical to those presented in ISO 8073.
Transport Disconnection is based on the NS-provider (TCP)
Disconnection and is therefore disruptive.
Pouffary & Young Standards Track [Page 11]
RFC 2126 ISO Transport on top of TCP March 1997
4.2 Class 2 over TCP
Class 2 provides the functions needed for connection establishment
with negotiation, data transfer with segmentation, and protocol error
reporting. It provides Transport Connection with flow control based
on that of the NS-provider (TCP). It provides Explicit Transport
Disconnection.
Class 2 is suitable when independence of Normal and Expedited Data
channels are required or when Explicit Transport Disconnection is
needed.
4.2.1 Connection Establishment
The principles used in connection establishment are based upon those
described in ISO 8073, with the following extensions:
- Connection Request and Connection Confirmation TPDUs may
negotiate use of "Transport Expedited Data Transfer" service.
"Transport Expedited Data Transfer" service is selected
by setting bit 1 of the "Additional Option" parameter,
and is negotiated using the mechanism specified in ISO 8073.
The default is to not use "Transport Expedited Data Transfer
Service".
- Connection Request and Connection Confirmation TPDUs may
negotiate use of "Expedited Data Acknowledgement".
"Expedited Data Acknowledgement" is selected by setting
bit 6 of the "Additional Option" parameter, and is
negotiated using the mechanism specified in ISO 8073.
The default is to not use "Expedited Data Acknowledgement"
for Expedited Data transfer.
- Connection Request and Connection Confirmation TPDUs may
negotiate use of the "Non-blocking Expedited Data" service.
"Non-blocking Expedited Data" is selected by setting
bit 7 of the "Additional Option" parameter, and is
negotiated using the mechanism specified in ISO 8073.
The default is to not use the "Non-blocking Expedited
Data" service.
- Connection Request and Connection Confirmation TPDUs may
negotiate use of either "Forward Connection (Splitting
and Recombining)" or "Reverse Connection" procedure for
Expedited Data transfer.
Pouffary & Young Standards Track [Page 12]
RFC 2126 ISO Transport on top of TCP March 1997
Use of "Forward Connection" or use of "Reverse Connection"
procedure is selected by setting bit 4 of the "Additional
Option" parameter, and is negotiated using the mechanism
specified in ISO 8073.
The default is to use "Forward Connection" procedure for
Expedited Data transfer.
- Connection Request and Connection Confirmation TPDUs must not
negotiate the use of "Explicit Flow Control".
- Non-standard TPDU size may be negotiated using the negotiation
mechanism specified in ISO 8073. The maximum TPDU size is 65531
octets. The default maximum TPDU size is 65531 octets.
Please refer to 'Notes to Implementors' section 6.4.
In the absence of a Flow Control policy, the use of ISO 8073
Multiplexing procedure lead to degradation of the quality of service.
The Protocol defined in this document does not supported
Multiplexing.
For the values of the "Additional Option" parameter please refer to
'Notes to Implementors' section 6.6.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -