📄 rfc2590.txt
字号:
Type 1 for Source Link-layer address.
2 for Target Link-layer address.
Length The length of the Option (including the
Type and Length fields) in units of 8 octet.
It may have the value:
2 -- for E.164, or X.121 numbers or NSAP
addresses not longer than 11 octets
[E164], [X25], [NSAP].
3 -- for NSAP addresses longer than 11 but
not longer than 19 octets.
Conta, et al. Standards Track [Page 13]
RFC 2590 IPv6 over Frame Relay Networks May 1999
4 -- for NSAP addresses longer than 19 octets
(not longer than the maximum NSAP address
length) [NSAP].
Link-Layer Address The E.164, X.121, number encoded in
Binary Coded Decimal (BCD), or the NSAP
address.
Description
The "Frame Relay Address" option value has three components:
(a) Address Type -- encoded in the first two bits of the first
octet. The first bit is set to 0, the second bit is set to 1.
(b) Size -- encoded in the last (high order) 6 bits of the first
octet. The maximum value of the field is the maximum size of
the E.164, X.121, or NSAP addresses.
(c) Address Family Number -- the number assigned for the E.164,
X.121, or NSAP address family [ASSNUM].
(d) E.164, X.121, number -- encoded in BCD (two digits per octet).
If the E.164, or X.121 has an even number of digits the
encoding will fill all encoding octets -- half the number of
digits. If the E.164, or X.121 number has an odd number of
digits, the lowest order digit fills only half of an octet --
it is placed in the first 4 bits of the last octet of the
E.164, or X.121 BCD encoding. The rest of the field up to the
last octet of the 11 octets available is padded with zeros.
NSAP address -- the NSAP address. It is padded with zeros if
the NSAP address does not fit in a number of octets that makes
the length of the option an even number of 8 octets.
7. Sending Neighbor Discovery Messages
Frame Relay networks do not provide link-layer native multicasting
mechanisms. For the correct functioning of the Neighbor Discovery
mechanisms, link-layer multicasting must be emulated.
To emulate multicasting for Neighbor Discovery (ND) the node MUST
send frames carrying ND multicast packets to all VCs on a Frame Relay
interface. This applies to ND messages addressed to both all-node and
solicited-node multicast addresses. This method works well with PVCs.
A mesh of PVCs MAY be configured and dedicated to multicast traffic
only. An alternative to a mesh of PVCs is a set of point-to-
multipoint PVCs.
Conta, et al. Standards Track [Page 14]
RFC 2590 IPv6 over Frame Relay Networks May 1999
8. Receiving Neighbor Discovery Messages
If a Neighbor Discovery Solicitation message received by a node
contains the Source link-layer address option with a DLCI, the
message MUST undergo Frame Relay specific preprocessing required for
the correct interpretation of the field during the ND protocol engine
processing. This processing is done before the Neighbor Discovery
message is processed by the Neighbor Discovery (ND) protocol engine.
The motivation for this processing is the local significance of the
DLCI fields in the Neighbor Discovery message: the DLCI significance
at the sender node is different than the DLCI significance at the
receiver node. In other words, the DLCI that identifies the Frame
Relay virtual circuit at the sender may be different than the DLCI
that identifies the virtual circuit at the receiver node.
Furthermore, the sender node may not be aware of the DLCI value at
the receiver. Therefore, the Frame Relay specific preprocessing
consists in modifying the Neighbor Discovery Solicitation message
received, by storing into the Source link-layer address option the
DLCI value of the virtual circuit on which the frame was received, as
known to the receiver node. The DLCI value being stored must be
encoded in the appropriate format (see previous sections). The
passing of the DLCI value from the Frame Relay module to the Neighbor
Discovery preprocessing module is an implementation choice.
9. Security Considerations
The mechanisms defined in this document for generating an IPv6 Frame
Relay interface identifier are intended to provide uniqueness at link
level -- virtual circuit. The protection against duplication is
achieved by way of IPv6 Stateless Autoconfiguration Duplicate Address
Detection mechanisms. Security protection against forgery or accident
at the level of the mechanisms described here is provided by the IPv6
security mechanisms [IPSEC], [IPSEC-Auth], [IPSEC-ESP] applied to
Neighbor Discovery [IPv6-ND] or Inverse Neighbor Discovery [IND]
messages.
To avoid an IPsec Authentication verification failure, the Frame
Relay specific preprocessing of a Neighbor Discovery Solicitation
message that contains a DLCI format Source link-layer address option,
MUST be done by the receiver node after it completed IP Security
processing.
Conta, et al. Standards Track [Page 15]
RFC 2590 IPv6 over Frame Relay Networks May 1999
10. Acknowledgments
Thanks to D. Harrington, and M. Merhar for reviewing this document
and providing useful suggestions. Also thanks to G. Armitage for his
reviewing and suggestions. Many thanks also to Thomas Narten for
suggestions on improving the document.
11. References
[AARCH] Hinden, R. and S. Deering, "IPv6 Addressing
Architecture", RFC 2373, July 1998.
[ASSNUM] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, October 1994. See also:
http://www.iana.org/numbers.html
[AUTOCONF] Thomson, S. and T. Narten, "IPv6 Stateless
Autoconfiguration", RFC 2462, December 1998.
[CANON] Narten, T. and C. Burton, "A Caution on the Canonical
Ordering of Link-Layer Addresses", RFC 2469, December
1998.
[ENCAPS] Brown, C. and A. Malis, "Multiprotocol Interconnect over
Frame Relay", STD 55, RFC 2427, November 1998.
[IND] Conta, A., "Extensions to IPv6 Neighbor Discovery for
Inverse Discovery", Work in Progress, December 1998.
[IPv6] Deering, S. and R. Hinden, "Internet Protocol Version 6
Specification", RFC 2460, December 1998.
[IPv6-ATM] Armitage, G., Schulter, P. and M. Jork, "IPv6 over ATM
Networks", RFC 2492, January 1999.
[IPv6-ETH] Crawford, M., "Transmission of IPv6 packets over
Ethernet Networks", RFC 2464, December 1998.
[IPv6-FDDI] Crawford, M., "Transmission of IPv6 packets over FDDI
Networks", RFC 2467, December 1998.
[IPv6-NBMA] Armitage, G., Schulter, P., Jork, M. and G. Harter,
"IPv6 over Non-Broadcast Multiple Access (NBMA)
networks", RFC 2491, January 1999.
[IPv6-ND] Narten, T., Nordmark, E. and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", RFC 2461, December
1998.
Conta, et al. Standards Track [Page 16]
RFC 2590 IPv6 over Frame Relay Networks May 1999
[IPv6-PPP] Haskin, D. and E. Allen, "IP Version 6 over PPP", RFC
2472, December 1998.
[IPv6-TR] Narten, T., Crawford, M. and M. Thomas, "Transmission
of IPv6 packets over Token Ring Networks", RFC 2470,
December 1998.
[IPSEC] Atkinson, R. and S. Kent, "Security Architecture for the
Internet Protocol", RFC 2401, November 1998.
[IPSEC-Auth] Atkinson, R. and S. Kent, "IP Authentication Header",
RFC 2402, December 1998.
[IPSEC-ESP] Atkinson, R. and S. Kent, "IP Encapsulating Security
Protocol (ESP)", RFC 2406, November 1998.
[RFC2119] Bradner, S., "Key words for use in RFCs to indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[E164] International Telecommunication Union - "Telephone
Network and ISDN Operation, Numbering, Routing, amd
Mobile Service", ITU-T Recommendation E.164, 1991.
[NSAP] ISO/IEC, "Information Processing Systems -- Data
Communications -- Network Service Definition Addendum 2:
Network Layer Addressing". International Standard
8348/Addendum 2, ISO/IEC JTC 1, Switzerland 1988.
[X25] "Information Technology -- Data Communications -- X.25
Packet Layer Protocol for Data Terminal Equipment",
International Standard 8208, March 1988.
Conta, et al. Standards Track [Page 17]
RFC 2590 IPv6 over Frame Relay Networks May 1999
12. Authors' Addresses
Alex Conta
Lucent Technologies Inc.
300 Baker Ave, Suite 100
Concord, MA 01742
Phone: +1-978-287-2842
EMail: aconta@lucent.com
Andrew Malis
Ascend Communications
1 Robbins Rd
Westford, MA 01886
Phone: +1-978-952-7414
EMail: malis@ascend.com
Martin Mueller
Lucent Technologies Inc.
300 Baker Ave, Suite 100
Concord, MA 01742
PHone: +1-978-287-2833
EMail: memueller@lucent.com
Conta, et al. Standards Track [Page 18]
RFC 2590 IPv6 over Frame Relay Networks May 1999
13. Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Conta, et al. Standards Track [Page 19]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -