📄 rfc2998.txt
字号:
In 4.2.2 and 4.2.3 some subset of the routers within the Diffserv
network is RSVP signaling aware (though traffic control is aggregated
as opposed to per-flow). The relative number of routers in the core
that participate in RSVP signaling is a provisioning decision that
must be made by the network administrator.
In one extreme case, only the border routers participate in RSVP
signaling. In this case, either the Diffserv network region must be
extremely over-provisioned and therefore, inefficiently used, or else
it must be carefully and statically provisioned for limited traffic
patterns. The border routers must enforce these patterns.
In the other extreme case, each router in the Diffserv network region
might participate in RSVP signaling. In this case, resources can be
used with optimal efficiency, but signaling processing requirements
and associated overhead increase. As noted above, RSVP aggregation
is one way to limit the signaling overhead at the cost of some loss
of optimality in resource utilization.
It is likely that some network administrators will compromise by
enabling RSVP signaling on some subset of routers in the Diffserv
network region. These routers will likely represent major traffic
switching points with over-provisioned or statically provisioned
regions of RSVP unaware routers between them.
Bernet, et al. Informational [Page 20]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
4.3 Dynamically Provisioned, Non-RSVP-aware Diffserv Region
Border routers might not use any form of RSVP signaling within the
Diffserv network region but might instead use custom protocols to
interact with an "oracle". The oracle is an agent that has
sufficient knowledge of resource availability and network topology to
make admission control decisions. The set of RSVP aware routers in
the previous two examples can be considered collectively as a form of
distributed oracle. In various definitions of the "bandwidth broker"
[4], it is able to act as a centralized oracle.
5. Implications of the Framework for Diffserv Network Regions
We have described a framework in which RSVP/Intserv style QoS can be
provided across end-to-end paths that include Diffserv network
regions. This section discusses some of the implications of this
framework for the Diffserv network region.
5.1 Requirements from Diffserv Network Regions
A Diffserv network region must meet the following requirements in
order for it to support the framework described in this document.
1. A Diffserv network region must be able to provide support for the
standard Intserv QoS services between its border routers. It must be
possible to invoke these services by use of standard PHBs within the
Diffserv region and appropriate behavior at the edge of the Diffserv
region.
2. Diffserv network regions must provide admission control
information to their "customer" (non-Diffserv) network regions. This
information can be provided by a dynamic protocol or through static
service level agreements enforced at the edges of the Diffserv
region.
3. Diffserv network regions must be able to pass RSVP messages, in
such a manner that they can be recovered at the egress of the
Diffserv network region. The Diffserv network region may, but is not
required to, process these messages. Mechanisms for transparently
carrying RSVP messages across a transit network are described in
[3,6,15,16].
To meet these requirements, additional work is required in the areas
of:
1. Mapping Intserv style service specifications to services that can
be provided by Diffserv network regions.
Bernet, et al. Informational [Page 21]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
2. Definition of the functionality required in network elements to
support RSVP signaling with aggregate traffic control (for network
elements residing in the Diffserv network region).
3. Definition of mechanisms to efficiently and dynamically provision
resources in a Diffserv network region (e.g., aggregated RSVP,
tunneling, MPLS, etc.). This might include protocols by which an
"oracle" conveys information about resource availability within a
Diffserv region to border routers. One example of such a mechanism
is the so-called "bandwidth broker" proposed in [19,20,21].
5.2 Protection of Intserv Traffic from Other Traffic
Network administrators must be able to share resources in the
Diffserv network region between three types of traffic:
a. End-to-end Intserv traffic. This is typically traffic associated
with quantitative QoS applications. It requires a specific quantity
of resources with a high degree of assurance.
b. Non-Intserv traffic. The Diffserv region may allocate resources
to traffic that does not make use of Intserv techniques to quantify
its requirements, e.g., through the use of static provisioning and
SLSs enforced at the edges of the region. Such traffic might be
associated with applications whose QoS requirements are not readily
quantifiable but which require a "better than best-effort" level of
service.
c. All other (best-effort) traffic. These three classes of traffic
must be isolated from each other by the appropriate configuration of
policers and classifiers at ingress points to the Diffserv network
region, and by appropriate provisioning within the Diffserv network
region. To provide protection for Intserv traffic in Diffserv
regions of the network, we suggest that the DSCPs assigned to such
traffic not overlap with the DSCPs assigned to other traffic.
6. Multicast
The use of integrated services over Diffserv networks is
significantly more complex for multicast sessions than for unicast
sessions. With respect to a multicast connection, each participating
region has a single ingress router and zero, one or several egress
routers. The difficulties of multicast are associated with Diffserv
regions that contain several egress routers. (Support of multicast
functionality outside the Diffserv region is relatively
straightforward since every Intserv-capable router along the
multicast tree stores state for each flow.)
Consider the following reference network:
Bernet, et al. Informational [Page 22]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
Non-Diffserv region 2
________
/ \
| | |---|
________ _____________ | |-|Rx1|
/ \ / |--\ |---| | |---|
/ \ / /|BR2\-----\ER2| /
|---| | |---| |---| |--|/ |---| \--|____/
|Tx |-| |ER1|---|BR1|--|RR| | ________
|---| | |-- | |---| |--|\ |---| /--| \
\ / \ \|BR3/-----|ER3| | |---|
\________/ \__________|--/ |---| |-|Rx2|
| | |---|
Non-Diffserv region 1 Diffserv region \ /
\______/
Non-Diffserv region 3
Figure 2: Sample Multicast Network Configuration
The reference network is similar to that of Figure 1. However, in
Figure 2, copies of the packets sent by Tx are delivered to several
receivers outside of the Diffserv region, namely to Rx1 and Rx2.
Moreover, packets are copied within the Diffserv region in a "branch
point" router RR. In the reference network BR1 is the ingress router
to the Diffserv region whereas BR2 and BR3 are the egress routers.
In the simplest case the receivers, Rx1 and Rx2 in the reference
network, require identical reservations. The Diffserv framework [18]
supports service level specifications (SLS) from an ingress router to
one, some or all of the egress routers. This calls for a "one to
many" SLS within the Diffserv region, from BR1 to BR2 and BR3. Given
that the SLS is granted by the Diffserv region, the ingress router
BR1, or perhaps an upstream node such as ER1, marks packets entering
the Diffserv region with the appropriate DSCP. The packets are
routed to the egresses of the Diffserv domain using the original
multicast address.
The two major problems, explained in the following, are associated
with heterogeneous multicast trees containing branch points within
the Diffserv region, i.e., multicast trees where the level of
resource requirement is not uniform among all receivers. An example
of such a scenario in the network of Figure 2 is the case where both
Rx1 and Rx2 need to receive multicast data from Tx1 but only one of
the receivers has requested a level of service above best effort. We
consider such scenarios in the following paragraphs.
Bernet, et al. Informational [Page 23]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
6.1 Remarking of packets in branch point routers
In the above scenario, the packets that arrive at BR1 are marked with
an appropriate DSCP for the requested Intserv service and are sent to
RR. Packets arriving at the branch point must be sent towards BR2
with the same DSCP otherwise the service to Rx1 is degraded.
However, the packets going from RR towards BR3 need not maintain the
high assurance level anymore. They may be demoted to best effort so
that the QoS provided to other packets along this branch of the tree
is not disrupted. Several problems can be observed in the given
scenario:
- In the Diffserv region, DSCP marking is done at edge routers
(ingress), whereas a branch point router might be a core
router, which does not mark packets.
- Being a core Diffserv router, RR classifies based on
aggregate traffic streams (BA), as opposed to per flow (MF)
classification. Hence, it does not necessarily have the
capability to distinguish those packets which belong to a
specific multicast tree and require demotion from the other
packets in the behavior aggregate, which carry the same DSCP.
- Since RR may be RSVP-unaware, it may not participate in the
admission control process, and would thus not store any per-
flow state about the reservations for the multicast tree.
Hence, even if RR were able to perform MF classification and
DSCP remarking, it would not know enough about downstream
reservations to remark the DSCP intelligently.
These problems could be addressed by a variety of mechanisms. We
list some below, while noting that none is ideal in all cases and
that further mechanisms may be developed in the future:
1. If some Intserv-capable routers are placed within the Diffserv
region, it might be possible to administer the network topology and
routing parameters so as to ensure that branch points occur only
within such routers. These routers would support MF classification
and remarking and hold per-flow state for the heterogeneous
reservations for which they are the branch point. Note that in this
case, branch point routers would have essentially the same
functionality as ingress routers of an RSVP-aware Diffserv domain.
2. Packets sent on the "non-reserved" branch (from RR towards BR3)
are marked with the "wrong" DSCP; that is, they are not demoted to
best effort but retain their DSCP. This in turn requires over
reservation of resources along that link or runs the risk of
degrading service to packets that legitimately bear the same DSCP
Bernet, et al. Informational [Page 24]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
along this path. However, it allows the Diffserv routers to remain
free of per-flow state.
3. A combination of mechanism 1 and 2 may be an effective compromise.
In this case, there are some Intserv-capable routers in the core of
the network, but the network cannot be administered so that ALL
branch points fall at such routers.
4. Administrators of Diffserv regions may decide no
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -