📄 rfc2998.txt
字号:
Bernet, et al. Informational [Page 10]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
3.1 Reference Network
The two realizations of the framework will be discussed in the
context of the following reference network:
________ ______________ ________
/ \ / \ / \
/ \ / \ / \
|---| | |---| |---| |---| |---| | |---|
|Tx |-| |ER1|---|BR1| |BR2|---|ER2| |-|Rx |
|---| | |-- | |---| |---| |---| | |---|
\ / \ / \ /
\________/ \______________/ \________/
Non-Diffserv region Diffserv region Non-Diffserv region
Figure 1: Sample Network Configuration
The reference network includes a Diffserv region in the middle of a
larger network supporting Intserv end-to-end. The Diffserv region
contains a mesh of routers, at least some of which provide aggregate
traffic control. The regions outside the Diffserv region (non-
Diffserv regions) contain meshes of routers and attached hosts, at
least some of which support the Integrated Services architecture.
In the interest of simplicity we consider a single QoS sender, Tx
communicating across this network with a single QoS receiver, Rx.
The edge routers (ER1, ER2) which are adjacent to the Diffserv region
interface to the border routers (BR1, BR2) within the Diffserv
region.
From an economic viewpoint, we may consider that the Diffserv region
sells service to the network outside the Diffserv region, which in
turn provides service to hosts. Thus, we may think of the non-
Diffserv regions as clients or customers of the Diffserv region. In
the following, we use the term "customer" for the non-Diffserv
regions. Note that the boundaries of the regions may or may not
align with administrative domain boundaries, and that a single region
might contain multiple administrative domains.
We now define the major components of the reference network.
3.1.1 Hosts
We assume that both sending and receiving hosts use RSVP to
communicate the quantitative QoS requirements of QoS-aware
applications running on the host. In principle, other mechanisms may
be used to establish resource reservations in Intserv-capable nodes,
Bernet, et al. Informational [Page 11]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
but RSVP is clearly the prevalent mechanism for this purpose.
Typically, a QoS process within the host operating system generates
RSVP signaling on behalf of applications. This process may also
invoke local traffic control.
As discussed above, traffic control in the host may mark the DSCP in
transmitted packets, and shape transmitted traffic to the
requirements of the Intserv service in use. Alternatively, the first
Intserv-capable router downstream from the host may provide these
traffic control functions.
3.1.2 End-to-End RSVP Signaling
We assume that RSVP signaling messages travel end-to-end between
hosts Tx and Rx to support RSVP/Intserv reservations outside the
Diffserv network region. We require that these end-to-end RSVP
messages are at least carried across the Diffserv region. Depending
on the specific realization of the framework, these messages may be
processed by none, some or all of the routers in the Diffserv region.
3.1.3 Edge Routers
ER1 and ER2 are edge routers, residing adjacent to the Diffserv
network regions. The functionality of the edge routers varies
depending on the specific realization of the framework. In the case
in which the Diffserv network region is RSVP unaware, edge routers
act as admission control agents to the Diffserv network. They
process signaling messages from both Tx and Rx, and apply admission
control based on resource availability within the Diffserv network
region and on customer defined policy. In the case in which the
Diffserv network region is RSVP aware, the edge routers apply
admission control based on local resource availability and on
customer defined policy. In this case, the border routers act as the
admission control agent to the Diffserv network region.
We will later describe the functionality of the edge routers in
greater depth for each of the two realizations of the framework.
3.1.4 Border Routers
BR1 and BR2 are border routers, residing in the Diffserv network
region. The functionality of the border routers varies depending on
the specific realization of the framework. In the case in which the
Diffserv network region is RSVP-unaware, these routers act as pure
Diffserv routers. As such, their sole responsibility is to police
submitted traffic based on the service level specified in the DSCP
and the agreement negotiated with the customer (aggregate
Bernet, et al. Informational [Page 12]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
trafficcontrol). In the case in which the Diffserv network region is
RSVP-aware, the border routers participate in RSVP signaling and act
as admission control agents for the Diffserv network region.
We will later describe the functionality of the border routers in
greater depth for each of the two realizations of the framework.
3.1.5 Diffserv Network Region
The Diffserv network region supports aggregate traffic control and is
assumed not to be capable of MF classification. Depending on the
specific realization of the framework, some number of routers within
the Diffserv region may be RSVP aware and therefore capable of per-
flow signaling and admission control. If devices in the Diffserv
region are not RSVP aware, they will pass RSVP messages transparently
with negligible performance impact (see [6]).
The Diffserv network region provides two or more levels of service
based on the DSCP in packet headers. It may be a single
administrative domain or may span multiple domains.
3.1.6 Non-Diffserv Network Regions
The network outside of the Diffserv region consists of Intserv
capable hosts and other network elements. Other elements may include
routers and perhaps various types of network (e.g., 802, ATM, etc.).
These network elements may reasonably be assumed to support Intserv,
although this might not be required in the case of over-provisioning.
Even if these elements are not Intserv capable, we assume that they
will pass RSVP messages unhindered. Routers outside of the Diffserv
network region are not precluded from providing aggregate traffic
control to some subset of the traffic passing through them.
3.2 Service Mapping
Intserv service requests specify an Intserv service type and a set of
quantitative parameters known as a "flowspec". At each hop in an
Intserv network, the Intserv service requests are interpreted in a
form meaningful to the specific link layer medium. For example at an
802.1 hop, the Intserv parameters are mapped to an appropriate 802.1p
priority level [5].
In our framework, Diffserv regions of the network are analogous to
the 802.1p capable switched segments described in [5]. Requests for
Intserv services must be mapped onto the underlying capabilities of
the Diffserv network region. Aspects of the mapping include:
Bernet, et al. Informational [Page 13]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
- selecting an appropriate PHB, or set of PHBs, for the requested
service;
- performing appropriate policing (including, perhaps, shaping or
remarking) at the edges of the Diffserv region;
- exporting Intserv parameters from the Diffserv region (e.g., for
the updating of ADSPECs);
- performing admission control on the Intserv requests that takes
into account the resource availability in the Diffserv region.
Exactly how these functions are performed will be a function of the
way bandwidth is managed inside the Diffserv network region, which is
a topic we discuss in Section 4.3.
When the PHB (or set of PHBs) has been selected for a particular
Intserv flow, it may be necessary to communicate the choice of DSCP
for the flow to other network elements. Two schemes may be used to
achieve this end, as discussed below.
3.2.1 Default Mapping
In this scheme, there is some standard, well-known mapping from
Intserv service type to a DSCP that will invoke the appropriate
behavior in the Diffserv network.
3.2.2 Network Driven Mapping
In this scheme, RSVP conversant routers in the Diffserv network
region (perhaps at its edge) may override the well-known mapping
described in 4.2.1. In the case that DSCPs are marked at the ingress
to the Diffserv region, the DSCPs can simply be remarked at the
boundary routers. However, in the case that DSCP marking occurs
upstream of the Diffserv region, either in a host or a router, then
the appropriate mapping needs to be communicated upstream, to the
marking device. This may be accomplished using RSVP, as described in
[14].
The decision regarding where to mark DSCP and whether to override the
well-known service mapping is a mater of policy to be decided by the
administrator of the Diffserv network region in cooperation with the
administrator of the network adjacent to the Diffserv region.
3.2.3 Microflow Separation
Boundary routers residing at the edge of the Diffserv region will
typically police traffic submitted from the outside the Diffserv
region in order to protect resources within the Diffserv region.
This policing will be applied on an aggregate basis, with no regard
for the individual microflows making up each aggregate. As a result,
Bernet, et al. Informational [Page 14]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
it is possible for a misbehaving microflow to claim more than its
fair share of resources within the aggregate, thereby degrading the
service provided to other microflows. This problem may be addressed
by:
1. Providing per microflow policing at the edge routers - this is
generally the most appropriate location for microflow policing, since
it pushes per-flow work to the edges of the network, where it scales
better. In addition, since Intserv-capable routers outside the
Diffserv region are responsible for providing microflow service to
their customers and the Diffserv region is responsible for providing
aggregate service to its customers, this distribution of
functionality mirrors the distribution of responsibility.
2. Providing per microflow policing at the border routers - this
approach tends to be less scalable than the previous approach. It
also imposes a management burden on the Diffserv region of the
network. However, it may be appropriate in certain cases, for the
Diffserv boundary routers to offer per microflow policing as a
value-add to its Intserv customers.
3. Relying on upstream shaping and policing - in certain cases, the
customer may trust the shaping of certain groups of hosts
sufficiently to not warrant reshaping or policing at the boundary of
the Diffserv region. Note that, even if the hosts are shaping
microflows properly, these shaped flows may become distorted as they
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -