📄 rfc2998.txt
字号:
how such a region may be used in delivery of end-to-end QOS when only
BA classification is performed inside the Diffserv region.
Non-Diffserv Region. The portions of the network outside the
Diffserv region. Such a region may also offer a variety of different
types of classification and traffic control.
Bernet, et al. Informational [Page 5]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
Note that, for the purposes of this document, the defining features
of a Diffserv region is the type of classification and traffic
control that is used for the delivery of end-to-end QOS for a
particular application. Thus, while it may not be possible to
identify a certain region as "purely Diffserv" with respect to all
traffic flowing through the region, it is possible to define it in
this way from the perspective of the treatment of traffic from a
single application.
1.6 The Framework
In the framework we present, end-to-end, quantitative QoS is provided
by applying the Intserv model end-to-end across a network containing
one or more Diffserv regions. The Diffserv regions may, but are not
required to, participate in end-to-end RSVP signaling for the purpose
of optimizing resource allocation and supporting admission control.
From the perspective of Intserv, Diffserv regions of the network are
treated as virtual links connecting Intserv capable routers or hosts
(much as an 802.1p network region is treated as a virtual link in
[5]). Within the Diffserv regions of the network routers implement
specific PHBs (aggregate traffic control). The total amount of
traffic that is admitted into the Diffserv region that will receive a
certain PHB may be limited by policing at the edge. As a result we
expect that the Diffserv regions of the network will be able to
support the Intserv style services requested from the periphery. In
our framework, we address the support of end-to-end Integrated
Services over the Diffserv regions of the network. Our goal is to
enable seamless inter-operation. As a result, the network
administrator is free to choose which regions of the network act as
Diffserv regions. In one extreme the Diffserv region is pushed all
the way to the periphery, with hosts alone having full Intserv
capability. In the other extreme, Intserv is pushed all the way to
the core, with no Diffserv region.
1.7 Contents
In section 3 we discuss the benefits that can be realized by using
the aggregate traffic control provided by Diffserv network regions in
the broader context of the Intserv architecture. In section 4, we
present the framework and the reference network. Section 5 details
two possible realizations of the framework. Section 6 discusses the
implications of the framework for Diffserv. Section 7 presents some
issues specific to multicast flows.
Bernet, et al. Informational [Page 6]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
2. Benefits of Using Intserv with Diffserv
The primary benefit of Diffserv aggregate traffic control is its
scalability. In this section, we discuss the benefits that
interoperation with Intserv can bring to a Diffserv network region.
Note that this discussion is in the context of servicing quantitative
QoS applications specifically. By this we mean those applications
that are able to quantify their traffic and QoS requirements.
2.1 Resource Based Admission Control
In Intserv networks, quantitative QoS applications use an explicit
setup mechanism (e.g., RSVP) to request resources from the network.
The network may accept or reject these requests in response. This is
"explicit admission control". Explicit and dynamic admission control
helps to assure that network resources are optimally used. To
further understand this issue, consider a Diffserv network region
providing only aggregate traffic control with no signaling. In the
Diffserv network region, admission control is applied in a relatively
static way by provisioning policing parameters at network elements.
For example, a network element at the ingress to a Diffserv network
region could be provisioned to accept only 50 Kbps of traffic for the
EF DSCP.
While such static forms of admission control do protect the network
to some degree, they can be quite ineffective. For example, consider
that there may be 10 IP telephony sessions originating outside the
Diffserv network region, each requiring 10 Kbps of EF service from
the Diffserv network region. Since the network element protecting
the Diffserv network region is provisioned to accept only 50 Kbps of
traffic for the EF DSCP, it will discard half the offered traffic.
This traffic will be discarded from the aggregation of traffic marked
EF, with no regard to the microflow from which it originated. As a
result, it is likely that of the ten IP telephony sessions, none will
obtain satisfactory service when in fact, there are sufficient
resources available in the Diffserv network region to satisfy five
sessions.
In the case of explicitly signaled, dynamic admission control, the
network will signal rejection in response to requests for resources
that would exceed the 50 Kbps limit. As a result, upstream network
elements (including originating hosts) and applications will have the
information they require to take corrective action. The application
might respond by refraining from transmitting, or by requesting
admission for a lesser traffic profile. The host operating system
might respond by marking the application's traffic for the DSCP that
corresponds to best-effort service. Upstream network elements might
respond by re-marking packets on the rejected flow to a lower service
Bernet, et al. Informational [Page 7]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
level. In some cases, it may be possible to reroute traffic over
alternate paths or even alternate networks (e.g., the PSTN for voice
calls). In any case, the integrity of those flows that were admitted
would be preserved, at the expense of the flows that were not
admitted. Thus, by appointing an Intserv-conversant admission
control agent for the Diffserv region of the network it is possible
to enhance the service that the network can provide to quantitative
QoS applications.
2.2 Policy Based Admission Control
In network regions where RSVP is used, resource requests can be
intercepted by RSVP-aware network elements and can be reviewed
against policies stored in policy databases. These resource requests
securely identify the user and the application for which the
resources are requested. Consequently, the network element is able
to consider per-user and/or per-application policy when deciding
whether or not to admit a resource request. So, in addition to
optimizing the use of resources in a Diffserv network region (as
discussed in 3.1) RSVP conversant admission control agents can be
used to apply specific customer policies in determining the specific
customer traffic flows entitled to use the Diffserv network region's
resources. Customer policies can be used to allocate resources to
specific users and/or applications.
By comparison, in Diffserv network regions without RSVP signaling,
policies are typically applied based on the Diffserv customer network
from which traffic originates, not on the originating user or
application within the customer network.
2.3 Assistance in Traffic Identification/Classification
Within Diffserv network regions, traffic is allotted service based on
the DSCP marked in each packet's IP header. Thus, in order to obtain
a particular level of service within the Diffserv network region, it
is necessary to effect the marking of the correct DSCP in packet
headers. There are two mechanisms for doing so, host marking and
router marking. In the case of host marking, the host operating
system marks the DSCP in transmitted packets. In the case of router
marking, routers in the network are configured to identify specific
traffic (typically based on MF classification) and to mark the DSCP
as packets transit the router. There are advantages and
disadvantages to each scheme. Regardless of the scheme used,
explicit signaling offers significant benefits.
Bernet, et al. Informational [Page 8]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
2.3.1 Host Marking
In the case of host marking, the host operating system marks the DSCP
in transmitted packets. This approach has the benefit of shifting
per-flow classification and marking to the source of the traffic,
where it scales best. It also enables the host to make decisions
regarding the mark that is appropriate for each transmitted packet
and hence the relative importance attached to each packet. The host
is generally better equipped to make this decision than the network.
Furthermore, if IPSEC encryption is used, the host may be the only
device in the network that is able to make a meaningful determination
of the appropriate marking for each packet, since various fields such
as port numbers would be unavailable to routers for MF
classification.
Host marking requires that the host be aware of the interpretation of
DSCPs by the network. This information can be configured into each
host. However, such configuration imposes a management burden.
Alternatively, hosts can use an explicit signaling protocol such as
RSVP to query the network to obtain a suitable DSCP or set of DSCPs
to apply to packets for which a certain Intserv service has been
requested. An example of how this can be achieved is described in
[14].
2.3.2 Router Marking
In the case of router marking, MF classification criteria must be
configured in the router in some way. This may be done dynamically
(e.g., using COPS provisioning), by request from the host operating
system, or statically via manual configuration or via automated
scripts.
There are significant difficulties in doing so statically. In many
cases, it is desirable to allot service to traffic based on the
application and/or user originating the traffic. At times it is
possible to identify packets associated with a specific application
by the IP port numbers in the headers. It may also be possible to
identify packets originating from a specific user by the source IP
address. However, such classification criteria may change
frequently. Users may be assigned different IP addresses by DHCP.
Applications may use transient ports. To further complicate matters,
multiple users may share an IP address. These factors make it very
difficult to manage static configuration of the classification
information required to mark traffic in routers.
An attractive alternative to static configuration is to allow host
operating systems to signal classification criteria to the router on
behalf of users and applications. As we will show later in this
Bernet, et al. Informational [Page 9]
RFC 2998 Integrated Services Over Diffserv Networks November 2000
document, RSVP signaling is ideally suited for this task. In
addition to enabling dynamic and accurate updating of MF
classification criteria, RSVP signaling enables classification of
IPSEC [13] packets (by use of the SPI) which would otherwise be
unrecognizable.
2.4 Traffic Conditioning
Intserv-capable network elements are able to condition traffic at a
per-flow granularity, by some combination of shaping and/or policing.
Pre-conditioning traffic in this manner before it is submitted to the
Diffserv region of the network is beneficial. In particular, it
enhances the ability of the Diffserv region of the network to provide
quantitative services using aggregate traffic control.
3. The Framework
In the general framework we envision an Internet in which the
Integrated Services architecture is used to deliver end-to-end QOS to
applications. The network includes some combination of Intserv
capable nodes (in which MF classification and per-flow traffic
control is applied) and Diffserv regions (in which aggregate traffic
control is applied). Individual routers may or may not participate
in RSVP signaling regardless of where in the network they reside.
We will consider two specific realizations of the framework. In the
first, resources within the Diffserv regions of the network are
statically provisioned and these regions include no RSVP aware
devices. In the second, resources within the Diffserv region of the
network are dynamically provisioned and select devices within the
Diffserv network regions participate in RSVP signaling.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -