📄 rfc1493.txt
字号:
Network Working Group E. Decker
Request for Comments: 1493 cisco Systems, Inc.
Obsoletes: 1286 P. Langille
Digital Equipment Corporation
A. Rijsinghani
Digital Equipment Corporation
K. McCloghrie
Hughes LAN Systems, Inc.
July 1993
Definitions of Managed Objects
for Bridges
Status of this Memo
This RFC specifies an IAB standards track protocol for the Internet
community, and requests discussion and suggestions for improvements.
Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol.
Distribution of this memo is unlimited.
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP based internets.
In particular it defines objects for managing MAC bridges based on
the IEEE 802.1D-1990 standard between Local Area Network (LAN)
segments. Provisions are made for support of transparent bridging.
Provisions are also made so that these objects apply to bridges
connected by subnetworks other than LAN segments.
Table of Contents
1. The Network Management Framework ...................... 2
2. Objects ............................................... 2
2.1 Format of Definitions ................................ 3
3. Overview .............................................. 3
3.1 Structure of MIB ..................................... 3
3.1.1 The dot1dBase Group ................................ 6
3.1.2 The dot1dStp Group ................................. 6
3.1.3 The dot1dSr Group .................................. 6
3.1.4 The dot1dTp Group .................................. 6
3.1.5 The dot1dStatic Group .............................. 6
3.2 Relationship to Other MIBs ........................... 6
3.2.1 Relationship to the 'system' group ................. 6
3.2.2 Relationship to the 'interfaces' group ............. 7
Decker, Langille, Rijsinghani & McCloghrie [Page 1]
RFC 1493 Bridge MIB July 1993
3.3 Textual Conventions .................................. 8
4. Changes from RFC 1286 ................................. 8
5. Definitions ........................................... 9
5.1 Groups in the Bridge MIB ............................. 11
5.2 The dot1dBase Group Definitions ...................... 11
5.3 The dot1dStp Group Definitions ....................... 14
5.4 The dot1dTp Group Definitions ........................ 22
5.5 The dot1dStatic Group Definitions .................... 28
5.6 Traps for use by Bridges ............................. 31
6. Acknowledgments ....................................... 31
7. References ............................................ 33
8. Security Considerations ............................... 33
9. Authors' Addresses .................................... 34
1. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
STD16/RFC 1155 which defines the SMI, the mechanisms used for
describing and naming objects for the purpose of management.
STD16/RFC 1212 defines a more concise description mechanism, which
is wholly consistent with the SMI.
RFC 1156 which defines MIB-I, the core set of managed objects for
the Internet suite of protocols. STD17/RFC 1213, defines MIB-II,
an evolution of MIB-I based on implementation experience and new
operational requirements.
STD15/RFC 1157 which defines the SNMP, the protocol used for
network access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
2. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
defined in the SMI. In particular, each object is named by an OBJECT
IDENTIFIER, an administratively assigned name, which specifies an
object type. The object type together with an object instance serves
to uniquely identify a specific instantiation of the object. For
human convenience, we often use a textual string, termed the
descriptor, to also refer to the object type.
Decker, Langille, Rijsinghani & McCloghrie [Page 2]
RFC 1493 Bridge MIB July 1993
2.1. Format of Definitions
Section 5 contains the specification of all object types contained in
this MIB module. The object types are defined using the conventions
defined in the SMI, as amended by the extensions specified in [9,10].
3. Overview
A common device present in many networks is the Bridge. This device
is used to connect Local Area Network segments below the network
layer.
There are two major modes defined for this bridging; transparent and
source route. The transparent method of bridging is defined in the
draft IEEE 802.1d specification [11]. This memo defines those
objects needed for the management of a bridging entity operating in
the transparent mode, as well as some objects applicable to all types
of bridges.
To be consistent with IAB directives and good engineering practice,
an explicit attempt was made to keep this MIB as simple as possible.
This was accomplished by applying the following criteria to objects
proposed for inclusion:
(1) Start with a small set of essential objects and add only
as further objects are needed.
(2) Require objects be essential for either fault or
configuration management.
(3) Consider evidence of current use and/or utility.
(4) Limit the total of objects.
(5) Exclude objects which are simply derivable from others in
this or other MIBs.
(6) Avoid causing critical sections to be heavily
instrumented. The guideline that was followed is one
counter per critical section per layer.
3.1. Structure of MIB
Objects in this MIB are arranged into groups. Each group is
organized as a set of related objects. The overall structure and
assignment of objects to their groups is shown below. Where
appropriate the corresponding IEEE 802.1d [11] management object name
is also included.
Decker, Langille, Rijsinghani & McCloghrie [Page 3]
RFC 1493 Bridge MIB July 1993
Bridge MIB Name IEEE 802.1d Name
dot1dBridge
dot1dBase
BridgeAddress Bridge.BridgeAddress
NumPorts Bridge.NumberOfPorts
Type
PortTable
Port BridgePort.PortNumber
IfIndex
Circuit
DelayExceededDiscards .DiscardTransitDelay
MtuExceededDiscards .DiscardOnError
dot1dStp
ProtocolSpecification
Priority SpanningTreeProtocol
.BridgePriority
TimeSinceTopologyChange .TimeSinceTopologyChange
TopChanges .TopologyChangeCount
DesignatedRoot .DesignatedRoot
RootCost .RootCost
RootPort .RootPort
MaxAge .MaxAge
HelloTime .HelloTime
HoldTime .HoldTime
ForwardDelay .ForwardDelay
BridgeMaxAge .BridgeMaxAge
BridgeHelloTime .BridgeHelloTime
BridgeForwardDelay .BridgeForwardDelay
PortTable
Port SpanningTreeProtocolPort
.PortNumber
Priority .PortPriority
State .SpanningTreeState
Enable
PathCost .PortPathCost
DesignatedRoot .DesignatedRoot
DesignatedCost .DesignatedCost
DesignatedBridge .DesignatedBridge
DesignatedPort .DesignatedPort
ForwardTransitions
dot1dTp
LearnedEntryDiscards BridgeFilter.DatabaseSize
.NumDynamic,NumStatic
AgingTime BridgeFilter.AgingTime
FdbTable
Address
Port
Decker, Langille, Rijsinghani & McCloghrie [Page 4]
RFC 1493 Bridge MIB July 1993
Status
PortTable
Port
MaxInfo
InFrames BridgePort.FramesReceived
OutFrames .ForwardOutbound
InDiscards .DiscardInbound
dot1dStatic
StaticTable
Address
ReceivePort
AllowedToGoTo
Status
The following IEEE 802.1d management objects have not been included
in the Bridge MIB for the indicated reasons.
IEEE 802.1d Object Disposition
Bridge.BridgeName Same as sysDescr (MIB II)
Bridge.BridgeUpTime Same as sysUpTime (MIB II)
Bridge.PortAddresses Same as ifPhysAddress (MIB II)
BridgePort.PortName Same as ifDescr (MIB II)
BridgePort.PortType Same as ifType (MIB II)
BridgePort.RoutingType Derivable from the implemented
groups
SpanningTreeProtocol
.BridgeIdentifier Combination of dot1dStpPriority
and dot1dBaseBridgeAddress
.TopologyChange Since this is transitory, it
is not considered useful.
SpanningTreeProtocolPort
.Uptime Same as ifLastChange (MIB II)
.PortIdentifier Combination of dot1dStpPort
and dot1dStpPortPriority
.TopologyChangeAcknowledged Since this is transitory, it
is not considered useful.
.DiscardLackOfBuffers Redundant
Transmission Priority These objects are not required
as per the Pics Proforma and
not considered useful.
.TransmissionPriorityName
.OutboundUserPriority
.OutboundAccessPriority
Decker, Langille, Rijsinghani & McCloghrie [Page 5]
RFC 1493 Bridge MIB July 1993
3.1.1. The dot1dBase Group
This mandatory group contains the objects which are applicable to all
types of bridges.
3.1.2. The dot1dStp Group
This group contains the objects that denote the bridge's state with
respect to the Spanning Tree Protocol. If a node does not
implemented the Spanning Tree Protocol, this group will not be
implemented.
3.1.3. The dot1dSr Group
This group contains the objects that describe the entity's state with
respect to source route bridging. If source routing is not supported
this group will not be implemented. This group is applicable to
source route only, and SRT bridges. This group will be described in
a separate document applicable only to source route bridging.
3.1.4. The dot1dTp Group
This group contains objects that describe the entity's state with
respect to transparent bridging. If transparent bridging is not
supported this group will not be implemented. This group is
applicable to transparent only and SRT bridges.
3.1.5. The dot1dStatic Group
This group contains objects that describe the entity's state with
respect to destination-address filtering. If destination-address
filtering is not supported this group will not be implemented. This
group is applicable to any type of bridge which performs
destination-address filtering.
3.2. Relationship to Other MIBs
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -