⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2790.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:






Network Working Group                                      S. Waldbusser
Request for Comments: 2790                      Lucent Technologies Inc.
Obsoletes: 1514                                                P. Grillo
Category: Standards Track                                     WeSync.com
                                                              March 2000


                           Host Resources MIB

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This memo defines a portion of the Management Information Base (MIB)
   for use with network management protocols in the Internet community.
   This memo obsoletes RFC 1514, the "Host Resources MIB". This memo
   extends that specification by clarifying changes based on
   implementation and deployment experience and documenting the Host
   Resources MIB in SMIv2 format while remaining semantically identical
   to the existing SMIv1-based MIB.

   This memo defines a MIB for use with managing host systems.  The term
   "host" is construed to mean any computer that communicates with other
   similar computers attached to the internet and that is directly used
   by one or more human beings. Although this MIB does not necessarily
   apply to devices whose primary function is communications services
   (e.g., terminal servers, routers, bridges, monitoring equipment),
   such relevance is not explicitly precluded.  This MIB instruments
   attributes common to all internet hosts including, for example, both
   personal computers and systems that run variants of Unix.











Waldbusser & Grillo         Standards Track                     [Page 1]

RFC 2790                   Host Resources MIB                 March 2000


Table of Contents

   1 The SNMP Management Framework ............................    2
   2 Host Resources MIB .......................................    3
   3 IANA Considerations ......................................    4
   4 Definitions ..............................................    4
   4.1 Textual Conventions ....................................    6
   4.2 The Host Resources System Group ........................    7
   4.3 The Host Resources Storage Group .......................    9
   4.4 The Host Resources Device Group ........................   12
   4.5 The Host Resources Running Software Group ..............   26
   4.6 The Host Resources  Running  Software  Performance
        Group .................................................   29
   4.7 The Host Resources Installed Software Group ............   30
   4.8 Conformance Definitions ................................   33
   5 Type Definitions .........................................   36
   6 Internationalization Considerations ......................   44
   7 Security Considerations ..................................   45
   8 References ...............................................   46
   9 Acknowledgments ..........................................   48
   10 Authors' Addresses ......................................   49
   11 Intellectual Property ...................................   49
   12 Full Copyright Statement ................................   50

1.  The SNMP Management Framework

   The SNMP Management Framework presently consists of five major
   components:

   o   An overall architecture, described in RFC 2571 [RFC2571].

   o   Mechanisms for describing and naming objects and events for the
       purpose of management. The first version of this Structure of
       Management Information (SMI) is called SMIv1 and described in STD
       16, RFC 1155 [RFC1155], STD 16, RFC 1212 [RFC1212] and RFC 1215
       [RFC1215]. The second version, called SMIv2, is described in STD
       58, RFC 2578 [RFC2578], RFC 2579 [RFC2579] and RFC 2580
       [RFC2580].

   o   Message protocols for transferring management information. The
       first version of the SNMP message protocol is called SNMPv1 and
       described in STD 15, RFC 1157 [RFC1157]. A second version of the
       SNMP message protocol, which is not an Internet standards track
       protocol, is called SNMPv2c and described in RFC 1901 [RFC1901]
       and RFC 1906 [RFC1906]. The third version of the message protocol
       is called SNMPv3 and described in RFC 1906 [RFC1906], RFC 2572
       [RFC2572] and RFC 2574 [RFC2574].




Waldbusser & Grillo         Standards Track                     [Page 2]

RFC 2790                   Host Resources MIB                 March 2000


   o   Protocol operations for accessing management information. The
       first set of protocol operations and associated PDU formats is
       described in STD 15, RFC 1157 [RFC1157]. A second set of protocol
       operations and associated PDU formats is described in RFC 1905
       [RFC1905].

   o   A set of fundamental applications described in RFC 2573 [RFC2573]
       and the view-based access control mechanism described in RFC 2575
       [RFC2575].

   A more detailed introduction to the current SNMP Management Framework
   can be found in RFC 2570 [RFC2570].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  Objects in the MIB are
   defined using the mechanisms defined in the SMI.

   This memo specifies a MIB module that is compliant to the SMIv2. A
   MIB conforming to the SMIv1 can be produced through the appropriate
   translations. The resulting translated MIB must be semantically
   equivalent, except where objects or events are omitted because no
   translation is possible (use of Counter64). Some machine readable
   information in SMIv2 will be converted into textual descriptions in
   SMIv1 during the translation process.  However, this loss of machine
   readable information is not considered to change the semantics of the
   MIB.

2.  Host Resources MIB

   The Host Resources MIB defines a uniform set of objects useful for
   the management of host computers.  Host computers are independent of
   the operating system, network services, or any software application.

   The Host Resources MIB defines objects which are common across many
   computer system architectures.

   In addition, there are objects in the SNMPv2-MIB [RFC1907] and IF-MIB
   [RFC2233] which also provide host management functionality.
   Implementation of the System and Interfaces groups is mandatory for
   implementors of the Host Resources MIB.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED","MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].







Waldbusser & Grillo         Standards Track                     [Page 3]

RFC 2790                   Host Resources MIB                 March 2000


3.  IANA Considerations

   This MIB contains type definitions for storage types, device types,
   and file system types for use as values for the hrStorageType,
   hrDeviceType, and hrFSType objects, respectively. As new computing
   technologies are developed, new types need to be registered for these
   technologies. The IANA (Internet Assigned Numbers Authority) is
   designated as the registration authority for new registrations beyond
   those published in this document. The IANA will maintain the HOST-
   RESOURCES-TYPES module as new registrations are added and publish new
   versions of this module.

   Given the large number of such technologies and potential confusion
   in naming of these technologies (such as a technology known by two
   names or a name and an acronym), there is a real danger that more
   than one registration might be created for what is essentially the
   same technology. In order to ensure that future type registrations
   are performed correctly, applications for new types will be reviewed
   by a Designated Expert appointed by the IESG.

4.  Definitions

   HOST-RESOURCES-MIB DEFINITIONS ::= BEGIN

   IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE, mib-2,
   Integer32, Counter32, Gauge32, TimeTicks  FROM SNMPv2-SMI

   TEXTUAL-CONVENTION, DisplayString,
   TruthValue, DateAndTime, AutonomousType   FROM SNMPv2-TC

   MODULE-COMPLIANCE, OBJECT-GROUP           FROM SNMPv2-CONF

   InterfaceIndexOrZero                      FROM IF-MIB;

   hostResourcesMibModule MODULE-IDENTITY
      LAST-UPDATED "200003060000Z"    -- 6 March 2000
      ORGANIZATION "IETF Host Resources MIB Working Group"
      CONTACT-INFO
          "Steve Waldbusser
          Postal: Lucent Technologies, Inc.
                  1213 Innsbruck Dr.
                  Sunnyvale, CA 94089
                  USA
          Phone:  650-318-1251
          Fax:    650-318-1633
          Email:  waldbusser@lucent.com




Waldbusser & Grillo         Standards Track                     [Page 4]

RFC 2790                   Host Resources MIB                 March 2000


          In addition, the Host Resources MIB mailing list is
          dedicated to discussion of this MIB. To join the
          mailing list, send a request message to
          hostmib-request@andrew.cmu.edu. The mailing list
          address is hostmib@andrew.cmu.edu."

      DESCRIPTION
          "This MIB is for use in managing host systems. The term
          `host' is construed to mean any computer that communicates
          with other similar computers attached to the internet and
          that is directly used by one or more human beings. Although
          this MIB does not necessarily apply to devices whose primary
          function is communications services (e.g., terminal servers,
          routers, bridges, monitoring equipment), such relevance is
          not explicitly precluded.  This MIB instruments attributes
          common to all internet hosts including, for example, both
          personal computers and systems that run variants of Unix."

      REVISION "200003060000Z"        -- 6 March 2000
      DESCRIPTION
          "Clarifications and bug fixes based on implementation
          experience.  This revision was also reformatted in the SMIv2
          format. The revisions made were:

          New RFC document standards:
             Added Copyright notice, updated introduction to SNMP
             Framework, updated references section, added reference to
             RFC 2119, and added a meaningful Security Considerations
             section.

          New IANA considerations section for registration of new types

          Conversion to new SMIv2 syntax for the following types and
          macros:
              Counter32, Integer32, Gauge32, MODULE-IDENTITY,
              OBJECT-TYPE, TEXTUAL-CONVENTION, OBJECT-IDENTITY,
              MODULE-COMPLIANCE, OBJECT-GROUP

          Used new Textual Conventions:
              TruthValue, DateAndTime, AutonomousType,
              InterfaceIndexOrZero

          Fixed typo in hrPrinterStatus.

          Added missing error bits to hrPrinterDetectedErrorState and
          clarified confusion resulting from suggested mappings to
          hrPrinterStatus.




Waldbusser & Grillo         Standards Track                     [Page 5]

RFC 2790                   Host Resources MIB                 March 2000


          Clarified that size of objects of type
          InternationalDisplayString is number of octets, not number
          of encoded symbols.

          Clarified the use of the following objects based on
          implementation experience:
              hrSystemInitialLoadDevice, hrSystemInitialLoadParameters,
              hrMemorySize, hrStorageSize, hrStorageAllocationFailures,
              hrDeviceErrors, hrProcessorLoad, hrNetworkIfIndex,
              hrDiskStorageCapacity, hrSWRunStatus, hrSWRunPerfCPU,
              and hrSWInstalledDate.

          Clarified implementation technique for hrSWInstalledTable.

          Used new AUGMENTS clause for hrSWRunPerfTable.

          Added Internationalization Considerations section.

   This revision published as RFC2790."

      REVISION "9910202200Z"    -- 20 October, 1999
      DESCRIPTION
          "The original version of this MIB, published as
          RFC1514."
      ::= { hrMIBAdminInfo 1 }

   host     OBJECT IDENTIFIER ::= { mib-2 25 }

   hrSystem        OBJECT IDENTIFIER ::= { host 1 }
   hrStorage       OBJECT IDENTIFIER ::= { host 2 }
   hrDevice        OBJECT IDENTIFIER ::= { host 3 }
   hrSWRun         OBJECT IDENTIFIER ::= { host 4 }
   hrSWRunPerf     OBJECT IDENTIFIER ::= { host 5 }
   hrSWInstalled   OBJECT IDENTIFIER ::= { host 6 }
   hrMIBAdminInfo  OBJECT IDENTIFIER ::= { host 7 }

   -- textual conventions

   KBytes ::= TEXTUAL-CONVENTION
       STATUS current
       DESCRIPTION
           "Storage size, expressed in units of 1024 bytes."
       SYNTAX Integer32 (0..2147483647)

   ProductID ::= TEXTUAL-CONVENTION
       STATUS current
       DESCRIPTION
           "This textual convention is intended to identify the



Waldbusser & Grillo         Standards Track                     [Page 6]

RFC 2790                   Host Resources MIB                 March 2000


           manufacturer, model, and version of a specific
           hardware or software product.  It is suggested that
           these OBJECT IDENTIFIERs are allocated such that all
           products from a particular manufacturer are registered
           under a subtree distinct to that manufacturer.  In
           addition, all versions of a product should be
           registered under a subtree distinct to that product.
           With this strategy, a management station may uniquely
           determine the manufacturer and/or model of a product
           whose productID is unknown to the management station.
           Objects of this type may be useful for inventory
           purposes or for automatically detecting
           incompatibilities or version mismatches between
           various hardware and software components on a system.

           For example, the product ID for the ACME 4860 66MHz
           clock doubled processor might be:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -