📄 rfc1472.txt
字号:
Network Working Group F. Kastenholz
Request for Comments: 1472 FTP Software, Inc.
June 1993
The Definitions of Managed Objects for
the Security Protocols of
the Point-to-Point Protocol
Status of this Memo
This RFC specifies an IAB standards track protocol for the Internet
community, and requests discussion and suggestions for improvements.
Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol.
Distribution of this memo is unlimited.
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP-based internets.
In particular, it describes managed objects used for managing the
Security Protocols on subnetwork interfaces using the family of
Point-to-Point Protocols [8, 9, 10, 11, & 12].
Table of Contents
1. The Network Management Framework ...................... 1
2. Objects ............................................... 2
2.1 Format of Definitions ................................ 2
3. Overview .............................................. 2
3.1 Object Selection Criteria ............................ 2
3.2 Structure of the PPP ................................. 2
3.3 MIB Groups ........................................... 3
4. Definitions ........................................... 4
5. Acknowledgements ...................................... 9
6. Security Considerations ............................... 10
7. References ............................................ 11
8. Author's Address ...................................... 12
1. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
STD 16/RFC 1155 which defines the SMI, the mechanisms used for
describing and naming objects for the purpose of management. STD
16/RFC 1212 defines a more concise description mechanism, which is
Kastenholz [Page 1]
RFC 1472 PPP/Security MIB June 1993
wholly consistent with the SMI.
STD 17/RFC 1213 which defines MIB-II, the core set of managed
objects for the Internet suite of protocols.
STD 15/RFC 1157 which defines the SNMP, the protocol used for
network access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
2. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [3]
defined in the SMI. In particular, each object type is named by an
OBJECT IDENTIFIER, an administratively assigned name. The object
type together with an object instance serves to uniquely identify a
specific instantiation of the object. For human convenience, we
often use a textual string, termed the descriptor, to refer to the
object type.
2.1. Format of Definitions
Section 4 contains the specification of all object types contained in
this MIB module. The object types are defined using the conventions
defined in the SMI, as amended by the extensions specified in [5,6].
3. Overview
3.1. Object Selection Criteria
To be consistent with IAB directives and good engineering practice,
an explicit attempt was made to keep this MIB as simple as possible.
This was accomplished by applying the following criteria to objects
proposed for inclusion:
(1) Require objects be essential for either fault or
configuration management. In particular, objects for
which the sole purpose was to debug implementations were
explicitly excluded from the MIB.
(2) Consider evidence of current use and/or utility.
(3) Limit the total number of objects.
(4) Exclude objects which are simply derivable from others in
Kastenholz [Page 2]
RFC 1472 PPP/Security MIB June 1993
this or other MIBs.
3.2. Structure of the PPP
This section describes the basic model of PPP used in developing the
PPP MIB. This information should be useful to the implementor in
understanding some of the basic design decisions of the MIB.
The PPP is not one single protocol but a large family of protocols.
Each of these is, in itself, a fairly complex protocol. The PPP
protocols may be divided into three rough categories:
Control Protocols
The Control Protocols are used to control the operation of the
PPP. The Control Protocols include the Link Control Protocol
(LCP), the Password Authentication Protocol (PAP), the Link
Quality Report (LQR), and the Challenge Handshake Authentication
Protocol (CHAP).
Network Protocols
The Network Protocols are used to move the network traffic over
the PPP interface. A Network Protocol encapsulates the datagrams
of a specific higher-layer protocol that is using the PPP as a
data link. Note that within the context of PPP, the term "Network
Protocol" does not imply an OSI Layer-3 protocol; for instance,
there is a Bridging network protocol.
Network Control Protocols (NCPs)
The NCPs are used to control the operation of the Network
Protocols. Generally, each Network Protocol has its own Network
Control Protocol; thus, the IP Network Protocol has its IP Control
Protocol, the Bridging Network Protocol has its Bridging Network
Control Protocol and so on.
This document specifies the objects used in managing one of these
protocols, namely the PPP Authentication Protocols.
3.3. MIB Groups
Objects in this MIB are arranged into several MIB groups. Each group
is organized as a set of related objects.
These groups are the basic unit of conformance: if the semantics of a
group are applicable to an implementation then all objects in the
group must be implemented.
The PPP MIB is organized into several MIB Groups, including, but not
limited to, the following groups:
Kastenholz [Page 3]
RFC 1472 PPP/Security MIB June 1993
o The PPP Link Group
o The PPP LQR Group
o The PPP LQR Extensions Group
o The PPP IP Group
o The PPP Bridge Group
o The PPP Security Group
This document specifies the following group:
PPP Security Group
The PPP Security Group contains all configuration and control
variables that apply to PPP security.
Implementation of this group is optional. Implementation is
optional since the variables in this group provide configuration
and control for the PPP Security functions. Thus, these variables
should be protected by SNMPv2 security. If an agent does not
support SNMPv2 with privacy it is strongly advised that this group
not be implemented. See the section on "Security Considerations"
at the end of this document.
4. Definitions
PPP-SEC-MIB DEFINITIONS ::= BEGIN
IMPORTS
Counter
FROM RFC1155-SMI
OBJECT-TYPE
FROM RFC-1212
ppp
FROM PPP-LCP-MIB;
pppSecurity OBJECT IDENTIFIER ::= { ppp 2 }
pppSecurityProtocols OBJECT IDENTIFIER ::= { pppSecurity 1 }
-- The following uniquely identify the various protocols
-- used by PPP security. These OBJECT IDENTIFIERS are
-- used in the pppSecurityConfigProtocol and
-- pppSecuritySecretsProtocol objects to identify to which
-- protocols the table entries apply.
pppSecurityPapProtocol OBJECT IDENTIFIER ::=
{ pppSecurityProtocols 1 }
pppSecurityChapMD5Protocol OBJECT IDENTIFIER ::=
{ pppSecurityProtocols 2 }
Kastenholz [Page 4]
RFC 1472 PPP/Security MIB June 1993
-- PPP Security Group
-- Implementation of this group is optional.
-- This table allows the network manager to configure
-- which security protocols are to be used on which
-- link and in what order of preference each is to be tried
pppSecurityConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF PppSecurityConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Table containing the configuration and
preference parameters for PPP Security."
::= { pppSecurity 2 }
pppSecurityConfigEntry OBJECT-TYPE
SYNTAX PppSecurityConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Security configuration information for a
particular PPP link."
INDEX { pppSecurityConfigLink,
pppSecurityConfigPreference }
::= { pppSecurityConfigTable 1 }
PppSecurityConfigEntry ::= SEQUENCE {
pppSecurityConfigLink
INTEGER,
pppSecurityConfigPreference
INTEGER,
pppSecurityConfigProtocol
OBJECT IDENTIFIER,
pppSecurityConfigStatus
INTEGER
}
pppSecurityConfigLink OBJECT-TYPE
SYNTAX INTEGER(0..2147483647)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The value of ifIndex that identifies the entry
Kastenholz [Page 5]
RFC 1472 PPP/Security MIB June 1993
in the interface table that is associated with
the local PPP entity's link for which this
particular security algorithm shall be
attempted. A value of 0 indicates the default
algorithm - i.e., this entry applies to all
links for which explicit entries in the table
do not exist."
::= { pppSecurityConfigEntry 1 }
pppSecurityConfigPreference OBJECT-TYPE
SYNTAX INTEGER(0..2147483647)
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The relative preference of the security
protocol identified by
pppSecurityConfigProtocol. Security protocols
with lower values of
pppSecurityConfigPreference are tried before
protocols with higher values of
pppSecurityConfigPreference."
::= { pppSecurityConfigEntry 2 }
pppSecurityConfigProtocol OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Identifies the security protocol to be
attempted on the link identified by
pppSecurityConfigLink at the preference level
identified by pppSecurityConfigPreference. "
::= { pppSecurityConfigEntry 3 }
pppSecurityConfigStatus OBJECT-TYPE
SYNTAX INTEGER {
invalid(1),
valid(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Setting this object to the value invalid(1)
has the effect of invalidating the
corresponding entry in the
Kastenholz [Page 6]
RFC 1472 PPP/Security MIB June 1993
pppSecurityConfigTable. It is an
implementation-specific matter as to whether
the agent removes an invalidated entry from the
table. Accordingly, management stations must
be prepared to receive tabular information from
agents that corresponds to entries not
currently in use. Proper interpretation of
such entries requires examination of the
relevant pppSecurityConfigStatus object."
DEFVAL { valid }
::= { pppSecurityConfigEntry 4 }
-- This table contains all of the ID/Secret pair information.
pppSecuritySecretsTable OBJECT-TYPE
SYNTAX SEQUENCE OF PppSecuritySecretsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Table containing the identities and secrets
used by the PPP authentication protocols. As
this table contains secret information, it is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -