📄 rfc2.txt
字号:
RFC 2
3b1a2 Several fields may be added and folded in parallel, if
they are folded appropiately after the addition.
+---------+---------+---------+---------+
| FIELD 4 | FIELD 3 | FIELD 2 | FIELD 1 |
+---------+---------+---------+---------+
+---------+---------+---------+---------+
| FIELD 8 | FIELD 7 | FIELD 6 | FIELD 5 |
+---------+---------+---------+---------+
ADD
+-+---------+---------+---------+---------+
| | | | | |
+-+---------+---------+---------+---------+
| | | | |
| | | | v
| | | | +---------+
| | | | | |
| | | | +---------+
| | | |
| | | \ +---------+
| | | `-> | |
| | | +---------+
| | |
| | \ +---------+
| | `-----------> | |
| | +---------+
| |
| \ +---------+
| `--------------------->| |
| +---------+
|
\ +---+
`-----CARRY------------------------>| |
+---+
ADD
+---------+---------+
| | |
+--CARRY--+---------+
|
\ +-----+
ADD `-----> | |
+-----+
+---------+
| |
+-RESULT--+
Duvall [Page 6]
RFC 2
3b1a2a Using this scheme, it is assumed that, if there
are n fields, the carries from the first n-1 fields
are automatically added into the low order position of
the next higher field, so that in folding, one need
only add the [n] result fields to the carry from the
nth field, and then add in an appropiately sized carry
from that addition (and repeat the desired number of
times to achieve the result.
3b1a3 A checksum computed in this manner has the advantage
that the word lengths of different machines may each be used
optimally:
3b1a3a If a string of suitable length is chosen for
computing the checksum, and a suitable checksum field
length is selected, the checksum technique for each of
the machines will be relatively optimal.
3b1a3a1 Field length: 288 bits (lowest common
denomenator of (24,32,36)
3b1a3a2 Checksum length: 8 bits (convenient field size
for all machines)
3b1b If a message is divided into groups of fields, and each
group is checksummed in this manner, an order dependent
checksum may be got by shifting the checksum for each group,
and adding it in (successively) to the checksum of the next
group
3c A facility will be provided where two HOSTs may enter a mode which
requires positive verification of all messages. This verification is
sent over the control link.
4 MONITOR FUNCTIONS
4a Network I/O drivers
4a1 Input
4a1a Input message from IMP.
4a1b Do error checking on message.
4a1b1 Verify checksum,
4a1b2 Send "message recieved" aknowledgement over control
link if aknowledge mode is in effect.
Duvall [Page 7]
RFC 2
4a1c (trans)character translation
4a1c1 There is a strong possibility that the character
translation may be done in the IMP.
4a1c2 This needs to be explored further with BBN.
4a1c3 There are two main considerations
4a1c3a Should the translation be done by table or
algorithm?
4a1c3a1 Initially it seems as though the best way to
go is table.
4a1c3b How should we decide which messages should be
translated, i.e. is it desirable to not translate
everything (YES!!) and by what means can we use to
differentiate?
4a1d Decode header, and pass message to correct recipient as
identified by source, and link.
4a2 Output
4a2a Build header
4a2b Character translation
4a2b1 See remarks under the section on output translation
(trans).
4a2c Create checksum
4a2d Check status of link
4a2d1 If there has not been a RFNM since the last message
transmitted out the link, wait for it.
4a2e Transmit message to IMP
4a2f If aknowledge mode is in effect,wait for
4a2f1 RFNM from destination IMP.
4a2f2 Response from destination HOST over control line 0.
Duvall [Page 8]
RFC 2
4b Network status
4b1 Maintain status of other HOSTs on network
4b1a If an IMP is down, then his HOST is considered to be down.
4b2 Maintain status of control lines.
4b3 Answer status queries from other HOSTs.
4b4 Inform other HOSTs as to status of primary and auxilliary
links on an interrupt basis.
4b5 Inform other HOSTs as to status of programs using primary and
secondary links
5 EXECUTIVE PRIMITIVES
5a Primary Links
5a1 These require the HOST number as a parameter.
5a1a Establish primary link
5a1b Connect controlling teletype to primary link
5a1c INPUT/OUTPUT over primary link
5a1d Interrogate status of primary link
5a1d1 Don't know what, exactly, this should do, but it seems
as though it might be useful.
5a1e Disconnect controlling teletype from primary link
5a1f Kill primary link
5b Auxilliary Links.
5b1 Establish auxilliary link.
5b1a requires the HOST number as a parameter
5b1b It returns a logical link number which is similar to a
file index. It is this number which is passed to all of the
other Auxilliary routines as a parameter.
5b2 INPUT/OUTPUT over auxilliary link
Duvall [Page 9]
RFC 2
5b3 Interrogate status auxilliary link.
5b3a Don't know what, exactly, this should do, but it seems as
though it might be useful.
5b4 Kill auxilliary link.
5c Special executive functions
5c1 Transparent. INPUT/OUTPUT over link
5c1a This may be used to do block I/O transfers over a link
5c1b The function of the monitor in this instance is to
transfer a buffer directly to its IMP
5c1c At does not modify it in any way
5c1c1 This means that the header and other control
information must be in the buffer.
5c1d The indended use of this is for network debugging.
6 INITIAL CHECKOUT
6a The network will be initially checked out using the links in a
simulated data-phone mode.
6a1 All messages will be one character in length.
6a2 Links will be transparent to the monitor, and controlled by
user program via a special executive primitive.
6a2a The initial test will be run from two user programs in
different HOSTs, e.g. DDT to DDT.
6a2b It will be paralleled by a telephone link or similar.
[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Robbie Bennet 10/1998 ]
[ This RFC was nroffed by Kelly Tardif, Viagenie 10/1999 ]
Duvall [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -