📄 rfc3353.txt
字号:
\
\
B---C---R2
Figure 11.
Ooms, et al. Informational [Page 23]
RFC 3353 IP Multicast in an MPLS Environment August 2002
10.3. Conservative vs. Liberal Label Retention Mode
In the Conservative Mode ([ANDE]) only the labels that are used for
forwarding data (if the next-hop for the FEC is the LSR which
advertised the label) are allocated and maintained. In the Liberal
Mode labels are advertised and maintained to all neighbors. Liberal
Mode does not make sense in multicast. Two reasons can be identified
for this:
1) All LSRs have a route for each unicast FEC. This is not true for
multicast FECs.
2) For multicast an LSR always knows to which neighbor to send the
label request or the label map messages. In e.g. unicast
Downstream Unsolicited mode (see below) the LSR does not know
where to send the label mappings and thus has to send the mapping
to all its neighbors. In this case supporting the Liberal Mode
does not generate extra messages (it still requires extra state
information and label space) and thus the threshold to support
Liberal Mode could be considered lower.
Table 3 shows the cases where it is known by an LSR where to send its
label requests.
+---------+----------------------------------+
| | label requested by |
| | LSRu | LSRd |
+---------+----------------+-----------------|
|unicast | Yes | No |
+---------+----------------+-----------------|
|multicast| Yes | Yes |
+---------+----------------+-----------------+
Table 3. Does an LSR know where to send its label requests ?
For a unicast flow, an LSR can determine the next hop LSR, which is
the one to send the request to in case of Upstream Unsolicited or
Downstream on Demand mode. The LSR is however not able to find the
previous hop. The previous hop is not necessarily the next hop
towards the source, because the path from A to B is not necessarily
the same as the path from B to A. Such a situation can occur as a
result of asymmetric link measures or in the event that multiple
equal cost paths exist [PAXS].
In the case of multicast, an LSR knows both the next hop(s) and the
previous hop. Because multicast trees are constructed using the
reverse shortest path method, the previous hop is always the next hop
towards the source or towards the root of the tree.
Ooms, et al. Informational [Page 24]
RFC 3353 IP Multicast in an MPLS Environment August 2002
10.4. Downstream vs. Upstream Label Allocation
The label can be allocated by either the downstream LSR (Downstream
on Demand, Downstream Unsolicited) or the upstream LSR (Upstream on
Demand, Upstream Unsolicited, implicit). The advantages of
downstream label allocation are:
a) It is the same mode as for unicast LDP, thus eliminating the need
to develop upstream label distribution procedures.
b) The same label can be kept when the upstream LSR changes due to a
route change, which is an advantage on multi-access networks (see
section 9).
c) Compatible with piggy-backing (especially the downstream
distribution mode).
The advantages of upstream label allocation are:
a) Easier label allocation in multi-access networks (see section 9).
b) The same label can be kept when the downstream LSR (which would
have been the label allocator in downstream mode in a multi-access
network) leaves the group (see section 9).
c) The upstream and implicit distribution mode allow a faster LSP
setup when the LSP is traffic triggered.
Whether to use upstream or downstream label distribution is outside
the scope of this framework. The relative complexity between the
necessary protocol extensions and the resolution mechanism needed, as
well as the relative operational complexity, will influence which way
to go.
10.5. Explicit vs. Implicit Label Distribution
Beside the explicit distribution modes (which use a signaling
protocol), [ACHA] proposes an implicit label distribution method by
using unknown labels. This method has all the advantages of the
upstream label allocation method and is probably the fastest label
advertisement method for traffic triggered LSPs.
Implicit label distribution is not applicable if the FEC-to-label
binding has been advertised prior to traffic arrival, e.g. explicit
routing (i.e. if all the information necessary to identify the FEC is
not present in the packet).
Ooms, et al. Informational [Page 25]
RFC 3353 IP Multicast in an MPLS Environment August 2002
Explicit distribution allows pre-establishment (before the arrival of
data) of LSPs with topology or request driven triggers.
11. Security Considerations
In general, the use of multicast in an MPLS environment poses no
extra security issues beyond the ones that already exist in multicast
and MPLS protocols as such.
The protocols described in this document are however not suited to
cross administrative boundaries.
When the multicast tree is determined by an existing multicast
routing protocol (this is the assumption made in this document,
except for the Explicit Routing section), clearly no additional
security issues are introduced with respect to the shape of the tree
(e.g. unauthorized joining, tapping, blackholing, injecting traffic,
...). These security issues should have been addressed in the
specifications of the multicast routing protocols.
In the MPLS context it is possible that control messages trigger L2
resource allocations (e.g. LSPs). If security flaws would still be
present in the existing protocols (which possibly are not too harmful
in its original context) the abusive sending of such control messages
can yield more severe DoS attacks.
In case of an "explicit routed" tree that is calculated centrally,
sufficient authentication must be done on the control messages that
set up the tree in the network nodes.
12. Acknowledgements
The authors would like to thank Eric Rosen, Piet Van Mieghem, Philip
Dumortier, Hans De Neve, Jan Vanhoutte, Alex Mondrus and Gerard
Gastaud for the fruitful discussions and/or their thorough revision
of this document.
Ooms, et al. Informational [Page 26]
RFC 3353 IP Multicast in an MPLS Environment August 2002
Informative References
[ACHA] A. Acharya, R. Dighe and F. Ansari, "IP Switching Over Fast
ATM Cell Transport (IPSOFACTO) : Switching Multicast flows",
IEEE Globecom '97.
[ADAM] A. Adams, J. Nicholas, W. Siadak, Protocol Independent
Multicast Version 2 Dense Mode Specification", Work In
Progress.
[ANDE] Andersson, L., Doolan, P., Feldman, N., Fredette, A. and
R. Thomas, "LDP Specification", RFC 3036, January 2001.
[AWDU] Awduche, D., Berger, L., Gan, D., Li, T., Swallow, G. and
V. Srinivasan, "RSVP-TE: Extensions to RSVP for LSP Tunnels",
RFC 3209, December 2001.
[BALL] Ballardie, A., "Core Based Trees (CBT) Multicast Routing
Architecture", RFC 2201, September 1997.
[CONT] Conta, D., Doolan, P. and A. Malis, "Use of Label Switching
on Frame Relay Networks", RFC 3034, January 2001.
[CRAW] Crawley, E., Berger, L., Berson, S., Baker, F., Borden, M.
and J. Krawczyk, "A Framework for Integrated Services and
RSVP over ATM", RFC 2382, August 1998.
[DAVI] Davie, B., Lawrence, J., McCloghrie, K., Rekhter, Y., Rosen,
E., Swallow, G. and P. Doolan, "MPLS using LDP and ATM VC
switching", RFC 3035, January 2001.
[DEER] Deering, S., Estrin, D., Farinacci, D., Helmy, A., Thaler,
D., Handley, M., Jacobson, V., Liu, C., Sharma, P. and L Wei,
"Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification", RFC 2362, June 1998.
[FARI] D. Farinacci, Y. Rekhter, E. Rosen and T. Qian, "Using PIM to
Distribute MPLS Labels for Multicast Routes", Work In
Progress.
[FENN] Fenner, W., "Internet Group Management Protocol, IGMP,
Version 2", RFC 2236, November 1997.
[GARR] Garrett, M. and M. Borden, "Interoperation of Controlled-Load
Service and Guaranteed Service with ATM", RFC 2381, August
1998.
Ooms, et al. Informational [Page 27]
RFC 3353 IP Multicast in an MPLS Environment August 2002
[HOLB] H. Holbrook, B. Cain, "Source-Specific Multicast for IP",
Work In Progress.
[MOY] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March
1994.
[NAGA] Nagami, K., Demizu, N., Esaki, H., Katsube, Y. and P. Doolan,
"VCID Notification over ATM link for LDP", RFC 3038, January
2001.
[PERL] R. Perlman, C-Y. Lee, A. Ballardie, J. Crowcroft, Z. Wang, T.
Maufer, "Simple Multicast", Work In Progress.
[PUSA] T. Pusateri, "Distance Vector Multicast Routing Protocol",
Work In Progress.
[PAXS] V. Paxson, "End-to-End Routing Behavior in the Internet",
IEEE/ACM Transactions on Networking 5(5), pp. 601-615.
[ROSE] Rosen, E., Rekhter, Y., Tappan, D., Farinacci, D., Fedorkow,
G., Li, T. and A. Conta, "MPLS Label Stack Encoding",
RFC 3032, January 2001.
Authors Addresses
Dirk Ooms
Alcatel Corporate Research Center
Fr. Wellesplein 1, 2018 Antwerp, Belgium.
Phone : 32 3 2404732
Fax : 32 3 2409879
EMail: Dirk.Ooms@alcatel.be
Bernard Sales
Alcatel Corporate Research Center
Fr. Wellesplein 1, 2018 Antwerp, Belgium.
Phone : 32 3 2409574
EMail: Bernard.Sales@alcatel.be
Wim Livens
Colt Telecom
Zweefvliegtuigstraat 10, 1130 Brussels, Belgium
Phone : 32 2 7901705
Fax : 32 2 7901711
EMail: WLivens@colt-telecom.be
Ooms, et al. Informational [Page 28]
RFC 3353 IP Multicast in an MPLS Environment August 2002
Arup Acharya
IBM TJ Watson Research Center
30 Saw Mill River Road, Hawthorne
NY 10532
Phone : 1 914 784 7481
EMail: arup@us.ibm.com
Frederic Griffoul
Ulticom, Inc.
Les Algorithmes, 2000 Route des Lucioles, BP29
06901 Sophia-Antipolis, FRANCE
EMail: griffoul@ulticom.com
Furquan Ansari
Bell Labs, Lucent Tech.
101 Crawfords Corner Rd., Holmdel, NJ 07733
Phone : 1 732 949 5249
Fax
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -