📄 rfc3353.txt
字号:
Network Working Group D. Ooms
Request for Comments: 3353 Alcatel
Category: Informational B. Sales
Alcatel
W. Livens
Colt Telecom
A. Acharya
IBM
F. Griffoul
Ulticom
F. Ansari
Bell Labs
August 2002
Overview of IP Multicast in a
Multi-Protocol Label Switching (MPLS) Environment
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
This document offers a framework for IP multicast deployment in an
MPLS environment. Issues arising when MPLS techniques are applied to
IP multicast are overviewed. The pros and cons of existing IP
multicast routing protocols in the context of MPLS are described and
the relation to the different trigger methods and label distribution
modes are discussed. The consequences of various layer 2 (L2)
technologies are listed. Both point-to-point and multi-access
networks are considered.
Ooms, et al. Informational [Page 1]
RFC 3353 IP Multicast in an MPLS Environment August 2002
Table of Contents
1. Introduction ............................................. 3
2. Layer 2 Characteristics .................................. 4
3. Taxonomy of IP Multicast Routing Protocols
in the Context of MPLS ................................... 5
3.1. Aggregation .............................................. 5
3.2. Flood & Prune ............................................ 5
3.3. Source/Shared Trees ...................................... 6
3.4. Co-existence of Source and Shared Trees .................. 7
3.5. Uni/Bi-directional Shared Trees .......................... 10
3.6. Encapsulated Multicast Data .............................. 11
3.7. Loop-free-ness ........................................... 11
3.8. Mapping of Characteristics on Existing Protocols ......... 11
4. Mixed L2/L3 Forwarding in a Single Node .................. 12
5. Taxonomy of IP Multicast LSP Triggers .................... 14
5.1. Request Driven ........................................... 14
5.1.1. General .................................................. 14
5.1.2. Multicast Routing Messages ............................... 15
5.1.3. Resource Reservation Messages ............................ 15
5.2. Topology Driven .......................................... 16
5.3. Traffic Driven ........................................... 16
5.3.1. General .................................................. 16
5.3.2. An Implementation Example ................................ 17
5.4. Combinations of Triggers and Label Distribution Modes .... 18
6. Piggy-backing ............................................ 18
7. Explicit Routing ......................................... 20
8. QoS/CoS .................................................. 20
8.1. DiffServ ................................................. 20
8.2. IntServ and RSVP ......................................... 21
9. Multi-access Networks .................................... 21
10. More Issues .............................................. 22
10.1. TTL Field ................................................ 22
10.2. Independent vs. Ordered Label Distribution Control ....... 23
10.3. Conservative vs. Liberal Label Retention Mode ............ 24
10.4. Downstream vs. Upstream Label Allocation ................. 25
10.5. Explicit vs. Implicit Label Distribution ................. 25
11. Security Considerations .................................. 26
12. Acknowledgements ......................................... 26
Informative References........................................... 27
Authors' Addresses .............................................. 28
Full Copyright Statement ........................................ 30
Ooms, et al. Informational [Page 2]
RFC 3353 IP Multicast in an MPLS Environment August 2002
Table of Abbreviations
ATM Asynchronous Transfer Node
CBT Core Based Tree
CoS Class of Service
DLCI Data Link Connection Identifier
DRrecv Designated Router of the receiver
DRsend Designated Router of the sender
DVMRP Distant Vector Multicast Routing Protocol
FR Frame Relay
IGMP Internet Group Management Protocol
IP Internet Protocol
L2 layer 2 (e.g. ATM, Frame Relay)
L3 layer 3 (e.g. IP)
LSP Label Switched Path
LSR Label Switching Router
LSRd Downstream LSR
LSRu Upstream LSR
MOSPF Multicast OSPF
mp2mp multipoint-to-multipoint
MRT Multicast Routing Table
p2mp point-to-multipoint
PIM-DM Protocol Independent Multicast-Dense Mode
PIM-SM Protocol Independent Multicast-Sparse Mode
QoS Quality of Service
RP Rendezvous Point
RPT-bit RP Tree bit [DEER]
RSVP Resource reSerVation Protocol
SPT-bit Shortest Path Tree [DEER]
SSM Source Specific Multicast
TCP Transmission Control Protocol
UDP User Datagram Protocol
VC Virtual Circuit
VCI Virtual Circuit Identifier
VP Virtual Path
VPI Virtual Path Identifier
1. Introduction
In an MPLS cloud the routes are determined by a L3 routing protocol.
These routes can then be mapped onto L2 paths to enhance network
performance. Besides this, MPLS offers a vehicle for enhanced
network services such as QoS/CoS, traffic engineering, etc.
Current unicast routing protocols generate a same (optimal) shortest
path in steady state for a certain (source, destination) pair.
Remark that unicast protocols can behave slightly different with
regard to equal cost paths.
Ooms, et al. Informational [Page 3]
RFC 3353 IP Multicast in an MPLS Environment August 2002
For multicast, the optimal solution (minimum cost to interconnect N
nodes) would impose a Steiner tree computation. Unfortunately, no
multicast routing protocol today is able to maintain such an optimal
tree. Different multicast protocols will therefore, in general,
generate different trees.
The discussion is focused on intra-domain multicast routing
protocols. Aspects of inter-domain routing are beyond the scope of
this document.
2. Layer 2 Characteristics
Although MPLS is multiprotocol both at L3 and at L2, in practice IP
is the only considered L3 protocol. MPLS can run on top of several
L2 technologies (PPP/Sonet, Ethernet, ATM, FR, ...).
When label switching is mapped on L2 switching capabilities (e.g.
VPI/VCI is used as label), attention is mainly focused on the mapping
to ATM [DAVI]. ATM offers high switching capacities and QoS
awareness, but in the context of MPLS it poses several limitations
which are described in [DAVI]. Similar considerations are made for
Frame Relay on L2 in [CONT]. The limitations can be summarized as:
- Limited Label Space: either the standardized or the implemented
number of bits available for a label can be small (e.g. VPI/VCI
space, DLCI space), limiting the number of LSPs that can be
established.
- Merging: some L2 technologies or implementations of these
technologies do not support multipoint-to-point and/or
multipoint-to-multipoint 'connections', obstructing the merging of
LSPs.
- TTL: L2 technologies do not support a 'TTL-decrement' function.
All three limitations can impact the implementation of multicast in
MPLS as will be described in this document.
When native MPLS is deployed the above limitations vanish. Moreover
on PPP and Ethernet links the same label can be used at the same time
for a unicast and a multicast LSP because different EtherTypes for
MPLS unicast and multicast are defined [ROSE].
Ooms, et al. Informational [Page 4]
RFC 3353 IP Multicast in an MPLS Environment August 2002
3. Taxonomy of IP Multicast Routing Protocols in the Context of MPLS
At the moment, an abundance of IP multicast routing protocols is
being proposed and developed. All these protocols have different
characteristics (scalability, computational complexity, latency,
control message overhead, tree type, etc...). It is not the purpose
of this document to give a complete taxonomy of IP multicast routing
protocols, only their characteristics relevant to the MPLS technology
will be addressed.
The following characteristics are considered:
- Aggregation
- Flood & Prune
- Source/Shared trees
- Co-existence of Source and Shared Trees
- Uni/Bi-directional shared trees
- Encapsulated multicast data
- Loop-free-ness
The discussion of these characteristics will not lead to the
selection of one superior multicast routing protocol. It is not
impossible that different IP multicast routing protocols will be
deployed in the Internet.
3.1. Aggregation
In unicast different destination addresses are aggregated to one
entry in the routing table, yielding one FEC and one LSP.
The granularity of multicast streams is (*, G) for a shared tree and
(S, G) for a source tree, S being the source address and G the
multicast group address. Aggregation of multicast trees with
different multicast 'destination' addresses on one LSP is a subject
for further study.
3.2. Flood & Prune
To establish a multicast tree some IP multicast routing protocols
(e.g. DVMRP, PIM-DM) flood the network with multicast data. The
branches can then be pruned by nodes which do not want to receive the
data of the specific multicast group. This process is repeated
periodically.
Flood & Prune multicast routing protocols have some characteristics
which significantly differ from unicast routing protocols:
Ooms, et al. Informational [Page 5]
RFC 3353 IP Multicast in an MPLS Environment August 2002
a) Volatile. Due to the Flood & Prune nature of the protocol, very
volatile tree structures are generated. Solutions to map a
dynamic L3 p2mp tree to a L2 p2mp LSP need to be efficient in
terms of signaling overhead and LSP setup time. The volatile L2
LSP will consume a lot of labels throughout the network, which is
a disadvantage when label space is limited.
b) Traffic-driven. The router only creates state for a certain group
when data arrives for that group. Routers also independently
decide to remove state when an inactivity timer expires.
- Thus LSPs can not be pre-established as is usually done in
unicast. To minimize the time between traffic arrival and LSP
establishment a fast LSP setup method is favorable.
- Since creation and deletion of a L3 route at each node is
triggered by traffic, this suggests that the LSP associated with
the route be setup and torn down in a traffic-driven manner as
well.
- If an LSR does not support L3 forwarding this traffic-driven
nature even requires that the upstream LSR takes the initiative
to create an LSP (Upstream Unsolicited or Downstream on Demand
label advertisement).
3.3. Source/Shared Trees
IP multicast routing protocols create either source trees (S, G),
i.e. a tree per source (S) and per multicast group (G), or shared
trees (*, G), i.e. one tree per multicast group (Figure 1).
R1 R1 R1
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -