📄 rfc2760.txt
字号:
Allman, et al. Informational [Page 5]
RFC 2760 Ongoing TCP Research Related to Satellites February 2000
ACKs slows the cwnd growth rate. In addition, when TCP starts
sending, it sends 1 segment. When using delayed ACKs a second
segment must arrive before an ACK is sent. Therefore, the receiver
is always forced to wait for the delayed ACK timer to expire before
ACKing the first segment, which also increases the transfer time.
Several proposals have suggested ways to make slow start less time
consuming. These proposals are briefly outlined below and references
to the research work given.
3.2.1 Larger Initial Window
3.2.1.1 Mitigation Description
One method that will reduce the amount of time required by slow start
(and therefore, the amount of wasted capacity) is to increase the
initial value of cwnd. An experimental TCP extension outlined in
[AFP98] allows the initial size of cwnd to be increased from 1
segment to that given in equation (1).
min (4*MSS, max (2*MSS, 4380 bytes)) (1)
By increasing the initial value of cwnd, more packets are sent during
the first RTT of data transmission, which will trigger more ACKs,
allowing the congestion window to open more rapidly. In addition, by
sending at least 2 segments initially, the first segment does not
need to wait for the delayed ACK timer to expire as is the case when
the initial size of cwnd is 1 segment (as discussed above).
Therefore, the value of cwnd given in equation 1 saves up to 3 RTTs
and a delayed ACK timeout when compared to an initial cwnd of 1
segment.
Also, we note that RFC 2581 [APS99], a standards-track document,
allows a TCP to use an initial cwnd of up to 2 segments. This change
is highly recommended for satellite networks.
3.2.1.2 Research
Several researchers have studied the use of a larger initial window
in various environments. [Nic97] and [KAGT98] show a reduction in
WWW page transfer time over hybrid fiber coax (HFC) and satellite
links respectively. Furthermore, it has been shown that using an
initial cwnd of 4 segments does not negatively impact overall
performance over dialup modem links with a small number of buffers
[SP98]. [AHO98] shows an improvement in transfer time for 16 KB
files across the Internet and dialup modem links when using a larger
initial value for cwnd. However, a slight increase in dropped
Allman, et al. Informational [Page 6]
RFC 2760 Ongoing TCP Research Related to Satellites February 2000
segments was also shown. Finally, [PN98] shows improved transfer
time for WWW traffic in simulations with competing traffic, in
addition to a small increase in the drop rate.
3.2.1.3 Implementation Issues
The use of a larger initial cwnd value requires changes to the
sender's TCP stack. Using an initial congestion window of 2 segments
is allowed by RFC 2581 [APS99]. Using an initial congestion window
of 3 or 4 segments is not expected to present any danger of
congestion collapse [AFP98], however may degrade performance in some
networks.
3.2.1.4 Topology Considerations
It is expected that the use of a large initial window would be
equally beneficial to all network architectures outlined in section
2.
3.2.1.5 Possible Interaction and Relationships with Other Research
Using a fixed larger initial congestion window decreases the impact
of a long RTT on transfer time (especially for short transfers) at
the cost of bursting data into a network with unknown conditions. A
mechanism that mitigates bursts may make the use of a larger initial
congestion window more appropriate (e.g., limiting the size of line-
rate bursts [FF96] or pacing the segments in a burst [VH97a]).
Also, using delayed ACKs only after slow start (as outlined in
section 3.2.3) offers an alternative way to immediately ACK the first
segment of a transfer and open the congestion window more rapidly.
Finally, using some form of TCP state sharing among a number of
connections (as discussed in 3.8) may provide an alternative to using
a fixed larger initial window.
3.2.2 Byte Counting
3.2.2.1 Mitigation Description
As discussed above, the wide-spread use of delayed ACKs increases the
time needed by a TCP sender to increase the size of the congestion
window during slow start. This is especially harmful to flows
traversing long-delay GEO satellite links. One mechanism that has
been suggested to mitigate the problems caused by delayed ACKs is the
use of "byte counting", rather than standard ACK counting
[All97a,All98]. Using standard ACK counting, the congestion window
is increased by 1 segment for each ACK received during slow start.
However, using byte counting the congestion window increase is based
Allman, et al. Informational [Page 7]
RFC 2760 Ongoing TCP Research Related to Satellites February 2000
on the number of previously unacknowledged bytes covered by each
incoming ACK, rather than on the number of ACKs received. This makes
the increase relative to the amount of data transmitted, rather than
being dependent on the ACK interval used by the receiver.
Two forms of byte counting are studied in [All98]. The first is
unlimited byte counting (UBC). This mechanism simply uses the number
of previously unacknowledged bytes to increase the congestion window
each time an ACK arrives. The second form is limited byte counting
(LBC). LBC limits the amount of cwnd increase to 2 segments. This
limit throttles the size of the burst of data sent in response to a
"stretch ACK" [Pax97]. Stretch ACKs are acknowledgments that cover
more than 2 segments of previously unacknowledged data. Stretch ACKs
can occur by design [Joh95] (although this is not standard), due to
implementation bugs [All97b,PADHV99] or due to ACK loss. [All98]
shows that LBC prevents large line-rate bursts when compared to UBC,
and therefore offers fewer dropped segments and better performance.
In addition, UBC causes large bursts during slow start based loss
recovery due to the large cumulative ACKs that can arrive during loss
recovery. The behavior of UBC during loss recovery can cause large
decreases in performance and [All98] strongly recommends UBC not be
deployed without further study into mitigating the large bursts.
Note: The standards track RFC 2581 [APS99] allows a TCP to use byte
counting to increase cwnd during congestion avoidance, however not
during slow start.
3.2.2.2 Research
Using byte counting, as opposed to standard ACK counting, has been
shown to reduce the amount of time needed to increase the value of
cwnd to an appropriate size in satellite networks [All97a]. In
addition, [All98] presents a simulation comparison of byte counting
and the standard cwnd increase algorithm in uncongested networks and
networks with competing traffic. This study found that the limited
form of byte counting outlined above can improve performance, while
also increasing the drop rate slightly.
[BPK97,BPK98] also investigated unlimited byte counting in
conjunction with various ACK filtering algorithms (discussed in
section 3.10) in asymmetric networks.
Allman, et al. Informational [Page 8]
RFC 2760 Ongoing TCP Research Related to Satellites February 2000
3.2.2.3 Implementation Issues
Changing from ACK counting to byte counting requires changes to the
data sender's TCP stack. Byte counting violates the algorithm for
increasing the congestion window outlined in RFC 2581 [APS99] (by
making congestion window growth more aggressive during slow start)
and therefore should not be used in shared networks.
3.2.2.4 Topology Considerations
It has been suggested by some (and roundly criticized by others) that
byte counting will allow TCP to provide uniform cwnd increase,
regardless of the ACKing behavior of the receiver. In addition, byte
counting also mitigates the retarded window growth provided by
receivers that generate stretch ACKs because of the capacity of the
return link, as discussed in [BPK97,BPK98]. Therefore, this change
is expected to be especially beneficial to asymmetric networks.
3.2.2.5 Possible Interaction and Relationships with Other Research
Unlimited byte counting should not be used without a method to
mitigate the potentially large line-rate bursts the algorithm can
cause. Also, LBC may send bursts that are too large for the given
network conditions. In this case, LBC may also benefit from some
algorithm that would lessen the impact of line-rate bursts of
segments. Also note that using delayed ACKs only after slow start
(as outlined in section 3.2.3) negates the limited byte counting
algorithm because each ACK covers only one segment during slow start.
Therefore, both ACK counting and byte counting yield the same
increase in the congestion window at this point (in the first RTT).
3.2.3 Delayed ACKs After Slow Start
3.2.3.1 Mitigation Description
As discussed above, TCP senders use the number of incoming ACKs to
increase the congestion window during slow start. And, since delayed
ACKs reduce the number of ACKs returned by the receiver by roughly
half, the rate of growth of the congestion window is reduced. One
proposed solution to this problem is to use delayed ACKs only after
the slow start (DAASS) phase. This provides more ACKs while TCP is
aggressively increasing the congestion window and less ACKs while TCP
is in steady state, which conserves network resources.
Allman, et al. Informational [Page 9]
RFC 2760 Ongoing TCP Research Related to Satellites February 2000
3.2.3.2 Research
[All98] shows that in simulation, using delayed ACKs after slow start
(DAASS) improves transfer time when compared to a receiver that
always generates delayed ACKs. However, DAASS also slightly
increases the loss rate due to the increased rate of cwnd growth.
3.2.3.3 Implementation Issues
The major problem with DAASS is in the implementation. The receiver
has to somehow know when the sender is using the slow start
algorithm. The receiver could implement a heuristic that attempts to
watch the change in the amount of data being received and change the
ACKing behavior accordingly. Or, the sender could send a message (a
flipped bit in the TCP header, perhaps) indicating that it was using
slow start. The implementation of DAASS is, therefore, an open
issue.
Using DAASS does not violate the TCP congestion control specification
[APS99]. However, the standards (RFC 2581 [APS99]) currently
recommend using delayed acknowledgments and DAASS goes (partially)
against this recommendation.
3.2.3.4 Topology Considerations
DAASS should work equally well in all scenarios presented in section
2. However, in asymmetric networks it may aggravate ACK congestion
in the return link, due to the increased number of ACKs (see sections
3.9 and 3.10 for a more detailed discussion of ACK congestion).
3.2.3.5 Possible Interaction and Relationships with Other Research
DAASS has several possible interactions with other proposals made in
the research community. DAASS can aggravate congestion on the path
between the data receiver and the data sender due to the increased
number of returning acknowledgments. This can have an especially
adverse effect on asymmetric networks that are prone to experiencing
ACK congestion. As outlined in sections 3.9 and 3.10, several
mitigations have been proposed to reduce the number of ACKs that are
passed over a low-bandwidth return link. Using DAASS will increase
the number of ACKs sent by the receiver. The interaction between
DAASS and the methods for reducing the number of ACKs is an open
research question. Also, as noted in section 3.2.1.5 above, DAASS
provides some of the same benefits as using a larger initial
congestion window and therefore it may not be desirable to use both
mechanisms together. However, this remains an open question.
Finally, DAASS and limited byte counting are both used to increase
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -