📄 rfc3291.txt
字号:
PeerEntry ::= SEQUENCE {
peerAddressType InetAddressType,
peerAddress InetAddress,
peerStatus INTEGER
}
peerAddressType OBJECT-TYPE
SYNTAX InetAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The type of Internet address by which the peer
is reachable."
::= { peerEntry 1 }
peerAddress OBJECT-TYPE
SYNTAX InetAddress (SIZE (1..64))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The Internet address for the peer. The type of this
address is determined by the value of the peerAddressType
object. Note that implementations must limit themselves
to a single entry in this table per reachable peer.
The peerAddress may not be empty due to the SIZE
restriction.
Daniele, et. al. Standards Track [Page 14]
RFC 3291 TCs for Internet Network Addresses May 2002
If a row is created administratively by an SNMP
operation and the address type value is dns(16), then
the agent stores the DNS name internally. A DNS name
lookup must be performed on the internally stored DNS
name whenever it is being used to contact the peer.
If a row is created by the managed entity itself and
the address type value is dns(16), then the agent
stores the IP address internally. A DNS reverse lookup
must be performed on the internally stored IP address
whenever the value is retrieved via SNMP."
::= { peerEntry 2 }
The following compliance statement specifies that compliant
implementations need only support IPv4/IPv6 addresses without a zone
indices. Support for DNS names or IPv4/IPv6 addresses with zone
indices is not required.
peerCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement of the peer MIB."
MODULE -- this module
MANDATORY-GROUPS { peerGroup }
OBJECT peerAddressType
SYNTAX InetAddressType { ipv4(1), ipv6(2) }
DESCRIPTION
"An implementation is only required to support IPv4
and IPv6 addresses without zone indices."
::= { somewhere 2 }
Note that the SMIv2 does not permit inclusion of not-accessible
objects in an object group (see section 3.1 in STD 58, RFC 2580 [8]).
It is therefore not possible to formally refine the syntax of
auxiliary objects which are not-accessible. In such a case, it is
suggested to express the refinement informally in the DESCRIPTION
clause of the MODULE-COMPLIANCE macro invocation.
Daniele, et. al. Standards Track [Page 15]
RFC 3291 TCs for Internet Network Addresses May 2002
6. Security Considerations
This module does not define any management objects. Instead, it
defines a set of textual conventions which may be used by other MIB
modules to define management objects.
Meaningful security considerations can only be written in the MIB
modules that define management objects. This document has therefore
no impact on the security of the Internet.
7. Acknowledgments
This document was produced by the Operations and Management Area
"IPv6MIB" design team. The authors would like to thank Fred Baker,
Randy Bush, Richard Draves, Mark Ellison, Bill Fenner, Jun-ichiro
Hagino, Mike Heard, Tim Jenkins, Glenn Mansfield, Keith McCloghrie,
Thomas Narten, Erik Nordmark, Peder Chr. Norgaard, Randy Presuhn,
Andrew Smith, Dave Thaler, Kenneth White, Bert Wijnen, and Brian Zill
for their comments and suggestions.
8. Intellectual Property Notice
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP 11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
9. Changes from RFC 2851
The following changes have been made relative to RFC 2851:
o Added new textual conventions InetAddressPrefixLength,
InetPortNumber, and InetAutonomousSystemNumber.
Daniele, et. al. Standards Track [Page 16]
RFC 3291 TCs for Internet Network Addresses May 2002
o Rewrote the introduction to say clearly that in general, one
should define MIB tables that work with all versions of IP. The
other approach of multiple tables for different IP versions is
strongly discouraged.
o Added text to the InetAddressType and InetAddress descriptions
which requires that implementations must reject set operations
with an inconsistentValue error if they lead to inconsistencies.
o Removed the strict ordering constraints. Description clauses now
must explain which InetAddressType object provides the context for
an InetAddress or InetAddressPrefixLength object.
o Aligned wordings with the IPv6 scoping architecture document.
o Split the InetAddressIPv6 textual convention into the two textual
conventions (InetAddressIPv6 and InetAddressIPv6z) and introduced
a new textual convention InetAddressIPv4z. Added ipv4z(3) and
ipv6z(4) named numbers to the InetAddressType enumeration.
Motivations for this change: (i) enable the introduction of a
textual conventions for non-global IPv4 addresses, (ii) alignment
with the textual conventions for transport addresses, (iii)
simpler compliance statements in cases where support for IPv6
addresses with zone indices is not required, (iv) simplify
implementations for host systems which will never have to report
zone indices.
References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[2] Harrington, D., Presuhn, R. and B. Wijnen, "An Architecture for
Describing SNMP Management Frameworks", RFC 2571, April 1999.
[3] Rose, M. and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based Internets", STD 16, RFC
1155, May 1990.
[4] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
[5] Rose, M., "A Convention for Defining Traps for use with the
SNMP", RFC 1215, March 1991.
[6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Structure of Management Information
Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
Daniele, et. al. Standards Track [Page 17]
RFC 3291 TCs for Internet Network Addresses May 2002
[7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
RFC 2579, April 1999.
[8] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
58, RFC 2580, April 1999.
[9] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "A Simple
Network Management Protocol (SNMP)", STD 15, RFC 1157, May 1990.
[10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January
1996.
[11] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Transport
Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1906, January 1996.
[12] Case, J., Harrington, D., Presuhn, R. and B. Wijnen, "Message
Processing and Dispatching for the Simple Network Management
Protocol (SNMP)", RFC 2572, April 1999.
[13] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
for version 3 of the Simple Network Management Protocol
(SNMPv3)", RFC 2574, April 1999.
[14] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1905, January 1996.
[15] Levi, D., Meyer, P. and B. Stewart, "SNMP Applications", RFC
2573, April 1999.
[16] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
Control Model (VACM) for the Simple Network Management Protocol
(SNMP)", RFC 2575, April 1999.
[17] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction
to Version 3 of the Internet-standard Network Management
Framework", RFC 2570, April 1999.
[18] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB",
RFC 2863, June 2000.
[19] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.
Daniele, et. al. Standards Track [Page 18]
RFC 3291 TCs for Internet Network Addresses May 2002
[20] Gilligan, R., Thomson, S., Bound, J. and W. Stevens, "Basic
Socket Interface Extensions for IPv6", RFC 2553, March 1999.
[21] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., Onoe, A.
and B. Zill, "IPv6 Scoped Address Architecture", Work in
Progress.
Authors' Addresses
Mike Daniele
Consultant
19 Pinewood Rd
Hudson, NH 03051
USA
Phone: +1 603 883-6365
EMail: md@world.std.com
Brian Haberman
Phone: +1 919 949-4828
EMail: bkhabs@nc.rr.com
Shawn A. Routhier
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501
USA
Phone: +1 510 749 2095
EMail: sar@epilogue.com
Juergen Schoenwaelder
TU Braunschweig
Bueltenweg 74/75
38106 Braunschweig
Germany
Phone: +49 531 391-3289
EMail: schoenw@ibr.cs.tu-bs.de
Daniele, et. al. Standards Track [Page 19]
RFC 3291 TCs for Internet Network Addresses May 2002
Full Copyright Statement
Copyright (C) The Internet Society (2002). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Daniele, et. al. Standards Track [Page 20]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -