📄 rfc2285.txt
字号:
See Also:
unidirectional traffic (3.2.1)
bidirectional traffic (3.2.2)
non-meshed traffic (3.3.1)
partially meshed traffic (3.3.2)
burst (3.4.1)
intended load (3.5.1)
offered load (3.5.2)
3.4 Bursts
This group of definitions applies to the intervals between frames or
groups of frames offered to the DUT/SUT.
3.4.1 Burst
Definition:
A sequence of frames transmitted with the minimum legal inter-
frame gap.
Discussion:
This definition follows from discussions in section 3.16 of RFC
1242 and section 21 of RFC 1944 which describes cases where it is
useful to consider isolated frames as single frame bursts.
Measurement units:
n/a
Issues:
Mandeville Informational [Page 9]
RFC 2285 Benchmarking Terminology February 1998
See Also:
burst size (3.4.2)
inter-burst gap (IBG) (3.4.3)
3.4.2 Burst size
Definition:
The number of frames in a burst.
Discussion:
Burst size can range from one to infinity. In unidirectional
traffic as well as in bidirectional or meshed traffic on full
duplex interfaces there is no theoretical limit to burst length.
When traffic is bidirectional or meshed bursts on half duplex
media are finite since interfaces interrupt transmission
intermittently to receive frames.
On real networks burst size will normally increase with window
size. This makes it desirable to test devices with small as well
as large burst sizes.
Measurement units:
number of N-octet frames
Issues:
See Also:
burst (3.4.1)
inter-burst gap (IBG) (3.4.3)
3.4.3 Inter-burst gap (IBG)
Definition:
The interval between two bursts.
Discussion:
This definition conforms to the discussion in section 20 of RFC
1944 on bursty traffic.
Mandeville Informational [Page 10]
RFC 2285 Benchmarking Terminology February 1998
Bidirectional and meshed traffic are inherently bursty since
interfaces share their time between receiving and transmitting
frames. External sources offering bursty traffic for a given
frame size and burst size must adjust the inter-burst gap to
achieve a specified average rate of frame transmission.
Measurement units:
nanoseconds
microseconds
milliseconds
seconds
Issues:
See Also:
burst (3.4.1)
burst size (3.4.2)
3.5 Loads
This group of definitions applies to the rates at which traffic is
offered to any DUT/SUT.
3.5.1 Intended load (Iload)
Definition:
The number of frames per second that an external source attempts
to transmit to a DUT/SUT for forwarding to a specified output
interface or interfaces.
Discussion:
Collisions on CSMA/CD links or the action of congestion control
mechanisms can effect the rate at which an external source of
traffic transmits frames to a DUT/SUT. This makes it useful to
distinguish the load that an external source attempts to apply to
a DUT/SUT and the load it is observed or measured to apply.
In the case of Ethernet an external source of traffic MUST
implement the truncated binary exponential back-off algorithm to
ensure that it is accessing the medium legally
Mandeville Informational [Page 11]
RFC 2285 Benchmarking Terminology February 1998
Measurement units:
bits per second
N-octets per second
(N-octets per second / media_maximum-octets per second) x 100
Issues:
See Also:
burst (3.4.1)
inter-burst gap (3.4.3)
offered load (3.5.2)
3.5.2 Offered load (Oload)
Definition:
The number of frames per second that an external source can be
observed or measured to transmit to a DUT/SUT for forwarding to a
specified output interface or interfaces.
Discussion:
The load which an external device can be observed to apply to a
DUT/SUT may be less than the intended load due to collisions on
half duplex media or the action of congestion control mechanisms.
This makes it important to distinguish intended and offered load
when analyzing the results of forwarding rate measurements using
bidirectional or fully meshed traffic.
Frames which are not successfully transmitted by an external
source of traffic to a DUT/SUT MUST NOT be counted as transmitted
frames when measuring forwarding rates.
The frame count on an interface of a DUT/SUT may exceed the rate
at which an external device offers frames due to the presence of
spanning tree BPDUs (Bridge Protocol Data Units) on 802.1D-
compliant switches or SNMP frames. Such frames should be treated
as modifiers as described in section 11 of RFC 1944.
Offered load MUST be indicated when reporting the results of
forwarding rate measurements.
Mandeville Informational [Page 12]
RFC 2285 Benchmarking Terminology February 1998
Measurement units:
bits per second
N-octets per second
(N-octets per second / media_maximum-octets per second) x 100
Issues:
token ring
See Also:
bidirectional traffic (3.2.2)
fully meshed traffic (3.3.3)
intended load (3.5.1)
forwarding rate (3.6.1)
3.5.3 Maximum offered load (MOL)
Definition:
The highest number of frames per second that an external source
can transmit to a DUT/SUT for forwarding to a specified output
interface or interfaces.
Discussion:
The maximum load that an external device can apply to a DUT/SUT
may not equal the maximum load allowed by the medium. This
will be the case when an external source lacks the resources
to transmit frames at the minimum legal inter-frame gap or when
it has sufficient resources to transmit frames below the
minimum legal inter-frame gap. Moreover, maximum load may vary
with respect to parameters other than a medium's maximum
theoretical utilization. For example, on those media employing
tokens, maximum load may vary as a function of Token Rotation
Time, Token Holding Time, or the ability to chain multiple
frames to a single token. The maximum load that an external
device applies to a DUT/SUT MUST be specified when measuring
forwarding rates.
Measurement units:
bits per second
N-octets per second
(N-octets per second / media_maximum-octets per second) x 100
Issues:
Mandeville Informational [Page 13]
RFC 2285 Benchmarking Terminology February 1998
See Also:
offered load (3.5.2)
3.5.4 Overloading
Definition:
Attempting to load a DUT/SUT in excess of the maximum rate of
transmission allowed by the medium.
Discussion:
Overloading can serve to exercise buffers and buffer allocation
algorithms as well as congestion control mechanisms. The number
of input interfaces required to overload one or more output
interfaces of a DUT/SUT will vary according to the media rates of
the interfaces involved.
An external source can also overload an interface by transmitting
frames below the minimum inter-frame gap. A DUT/SUT MUST forward
such frames at intervals equal to or above the minimum gap
specified in standards.
A DUT/SUT using congestion control techniques such as backpressure
or forward pressure may exhibit no frame loss when a tester
attempts to overload one or more of its interfaces. This should
not be exploited to suggest that the DUT/SUT supports rates of
transmission in excess of the maximum rate allowed by the medium
since both techniques reduce the rate at which the tester offers
frames to prevent overloading. Backpressure achieves this purpose
by jamming the transmission interfaces of the tester and forward
pressure by hindering the tester from gaining fair access to the
medium. Analysis of both cases should take the distinction
between intended load (3.5.1) and offered load (3.5.2) into
account.
Measurement units:
bits per second
N-octets per second
(N-octets per second / media_maximum-octets per second) x 100
Issues:
Mandeville Informational [Page 14]
RFC 2285 Benchmarking Terminology February 1998
See Also:
unidirectional traffic (3.2.1)
intended load (3.5.1)
offered load (3.5.2)
forwarding rate (3.6.1)
backpressure (3.7.1)
forward pressure (3.7.2)
3.6 Forwarding rates
This group of definitions applies to the rates at which traffic is
forwarded by any DUT/SUT in response to a stimulus.
3.6.1 Forwarding rate (FR)
Definition:
The number of frames per second that a device can be observed to
successfully transmit to the correct destination interface in
response to a specified offered load.
Discussion:
Unlike throughput defined in section 3.17 of RFC 1242, forwarding
rate makes no explicit reference to frame loss. Forwarding rate
refers to the number of frames per second observed on the output
side of the interface under test and MUST be reported in relation
to the offered load. Forwarding rate can be measured with
different traffic orientations and distributions.
It should be noted that the forwarding rate of a DUT/SUT may be
sensitive to the action of congestion control mechanisms.
Measurement units:
N-octet frames per second
Issues:
See Also:
offered load (3.5.2)
forwarding rate at maximum offered load (3.6.2)
maximum forwarding rate (3.6.3)
Mandeville Informational [Page 15]
RFC 2285 Benchmarking Terminology February 1998
3.6.2 Forwarding rate at maximum offered load (FRMOL)
Definition:
The number of frames per second that a device can be observed to
successfully transmit to the correct destination interface in
response to the maximum offered load.
Discussion:
Forwarding rate at maximum offered load may be less than the
maximum rate at which a device can be observed to successfully
forward traffic. This will be the case when the ability of a
device to forward frames degenerates when offered traffic at
maximum load.
Maximum offered load MUST be cited when reporting forwarding rate
at maximum offered load.
Measurement units:
N-octet frames per second
Issues:
See Also:
maximum offered load (3.5.3)
forwarding rate (3.6.1)
maximum forwarding rate (3.6.3)
3.6.3 Maximum forwarding rate (MFR)
Definition:
The highest forwarding rate of a DUT/SUT taken from an iterative
set of forwarding rate measurements.
Discussion:
The forwarding rate of a device may degenerate before maximum load
is reached. The load applied to a device must be cited when
reporting maximum forwarding rate.
Mandeville Informational [Page 16]
RFC 2285 Benchmarking Terminology February 1998
The following example illustrates how the terms relative to
loading and forwarding rates are meant to be used. In particular
it shows how the distinction between forwarding rate at maximum
offered load (FRMOL) and maximum forwarding rate (MFR) can be used
to characterize a DUT/SUT.
(A) (B)
Test Device DUT/SUT
Offered Load Forwarding Rate
------------ ---------------
(1) 14,880 fps - MOL 7,400 fps - FRMOL
(2) 13,880 fps 8,472 fps
(3) 12,880 fps 12,880 fps - MFR
Measurement units:
N-octet frames per second
Issues:
See Also:
offered load (3.5.2)
forwarding rates (3.6.1)
forwarding rate at maximum load (3.6.2)
3.7 Congestion control
This group of definitions applies to the behavior of a DUT/SUT when
congestion or contention is present.
3.7.1 Backpressure
Definition:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -