📄 rfc1829.txt
字号:
Network Working Group P. Karn
Request for Comments: 1829 Qualcomm
Category: Standards Track P. Metzger
Piermont
W. Simpson
Daydreamer
August 1995
The ESP DES-CBC Transform
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This document describes the DES-CBC security transform for the IP
Encapsulating Security Payload (ESP).
Table of Contents
1. Introduction .......................................... 1
1.1 Keys ............................................ 1
1.2 Initialization Vector ........................... 1
1.3 Data Size ....................................... 2
1.4 Performance ..................................... 2
2. Payload Format ........................................ 3
3. Algorithm ............................................. 5
3.1 Encryption ...................................... 5
3.2 Decryption ...................................... 5
SECURITY CONSIDERATIONS ...................................... 6
ACKNOWLEDGEMENTS ............................................. 7
REFERENCES ................................................... 8
AUTHOR'S ADDRESS ............................................. 10
Karn, Metzger & Simpson Standards Track [Page i]
RFC 1829 ESP DES-CBC August 1995
1. Introduction
The Encapsulating Security Payload (ESP) [RFC-1827] provides
confidentiality for IP datagrams by encrypting the payload data to be
protected. This specification describes the ESP use of the Cipher
Block Chaining (CBC) mode of the US Data Encryption Standard (DES)
algorithm [FIPS-46, FIPS-46-1, FIPS-74, FIPS-81].
All implementations that claim conformance or compliance with the
Encapsulating Security Payload specification MUST implement this
DES-CBC transform.
This document assumes that the reader is familiar with the related
document "Security Architecture for the Internet Protocol"
[RFC-1825], which defines the overall security plan for IP, and
provides important background for this specification.
1.1. Keys
The secret DES key shared between the communicating parties is eight
octets in length. This key consists of a 56-bit quantity used by the
DES algorithm. The 56-bit key is stored as a 64-bit (eight octet)
quantity, with the least significant bit of each octet used as a
parity bit.
1.2. Initialization Vector
This mode of DES requires an Initialization Vector (IV) that is eight
octets in length.
Each datagram contains its own IV. Including the IV in each datagram
ensures that decryption of each received datagram can be performed,
even when other datagrams are dropped, or datagrams are re-ordered in
transit.
The method for selection of IV values is implementation dependent.
Notes:
A common acceptable technique is simply a counter, beginning with
a randomly chosen value. While this provides an easy method for
preventing repetition, and is sufficiently robust for practical
use, cryptanalysis may use the rare serendipitous occurrence when
a corresponding bit position in the first DES block increments in
exactly the same fashion.
Karn, Metzger & Simpson Standards Track [Page 1]
RFC 1829 ESP DES-CBC August 1995
Other implementations exhibit unpredictability, usually through a
pseudo-random number generator. Care should be taken that the
periodicity of the number generator is long enough to prevent
repetition during the lifetime of the session key.
1.3. Data Size
The DES algorithm operates on blocks of eight octets. This often
requires padding after the end of the unencrypted payload data.
Both input and output result in the same number of octets, which
facilitates in-place encryption and decryption.
On receipt, if the length of the data to be decrypted is not an
integral multiple of eight octets, then an error is indicated, as
described in [RFC-1825].
1.4. Performance
At the time of writing, at least one hardware implementation can
encrypt or decrypt at about 1 Gbps [Schneier94, p. 231].
Karn, Metzger & Simpson Standards Track [Page 2]
RFC 1829 ESP DES-CBC August 1995
2. Payload Format
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Security Parameters Index (SPI) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Initialization Vector (IV) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Payload Data ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Padding | Pad Length | Payload Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Security Parameters Index (SPI)
A 32-bit value identifying the Security Parameters for this
datagram. The value MUST NOT be zero.
Initialization Vector (IV)
The size of this field is variable, although it is constant for
all DES-CBC datagrams of the same SPI and IP Destination. Octets
are sent in network order (most significant octet first)
[RFC-1700].
The size MUST be a multiple of 32-bits. Sizes of 32 and 64 bits
are required to be supported. The use of other sizes is beyond
the scope of this specification. The size is expected to be
indicated by the key management mechanism.
When the size is 32-bits, a 64-bit IV is formed from the 32-bit
value followed by (concatenated with) the bit-wise complement of
the 32-bit value. This field size is most common, as it aligns
the Payload Data for both 32-bit and 64-bit processing.
All conformant implementations MUST also correctly process a
64-bit field size. This provides strict compatibility with
existing hardware implementations.
It is the intent that the value not repeat during the lifetime
of the encryption session key. Even when a full 64-bit IV is
used, the session key SHOULD be changed at least as frequently
as 2**32 datagrams.
Karn, Metzger & Simpson Standards Track [Page 3]
RFC 1829 ESP DES-CBC August 1995
Payload Data
The size of this field is variable.
Prior to encryption and after decryption, this field begins with
the IP Protocol/Payload header specified in the Payload Type
field. Note that in the case of IP-in-IP encapsulation (Payload
Type 4), this will be another IP header.
Padding
The size of this field is variable.
Prior to encryption, it is filled with unspecified implementation
dependent (preferably random) values, to align the Pad Length and
Payload Type fields at an eight octet boundary.
After decryption, it MUST be ignored.
Pad Length
This field indicates the size of the Padding field. It does not
include the Pad Length and Payload Type fields. The value
typically ranges from 0 to 7, but may be up to 255 to permit
hiding of the actual data length.
This field is opaque. That is, the value is set prior to
encryption, and is examined only after decryption.
Payload Type
This field indicates the contents of the Payload Data field, using
the IP Protocol/Payload value. Up-to-date values of the IP
Protocol/Payload are specified in the most recent "Assigned
Numbers" [RFC-1700].
This field is opaque. That is, the value is set prior to
encryption, and is examined only after decryption.
For example, when encrypting an entire IP datagram (Tunnel-
Mode), this field will contain the value 4, which indicates
IP-in-IP encapsulation.
Karn, Metzger & Simpson Standards Track [Page 4]
RFC 1829 ESP DES-CBC August 1995
3. Algorithm
In DES-CBC, the base DES encryption function is applied to the XOR of
each plaintext block with the previous ciphertext block to yield the
ciphertext for the current block. This provides for
re-synchronization when datagrams are lost.
For more explanation and implementation information for DES, see
[Schneier94].
3.1. Encryption
Append zero or more octets of (preferably random) padding to the
plaintext, to make its modulo 8 length equal to 6. For example, if
the plaintext length is 41, 5 octets of padding are added.
Append a Pad Length octet containing the number of padding octets
just added.
Append a Payload Type octet containing the IP Protocol/Payload value
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -