📄 rfc2091.txt
字号:
Meyer & Sherry Standards Track [Page 15]
RFC 2091 Trigger RIP January 1997
0 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Operation (2) |
+---------------+---------------+
0 1 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Update Header (4) |
+-------------------------------+-------------------------------+
Update Response then has up to 8 service entries (each 64 octets):
0 1 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Service Type (2) | |
+-------------------------------+ |
| Service Name (48) |
| . |
.
. +-------------------------------+
| . | Network Address (4) |
+-------------------------------+-------------------------------+
| Network Address (cont) | |
+-------------------------------+ |
| Node Address (6) |
+-------------------------------+-------------------------------+
| Socket Address (2) | Hops to Server (2) |
+-------------------------------+-------------------------------+
.
.
The format of a Netware SAP datagram in octets, with each tick mark
representing one bit. All fields are coded in network byte order
(big-endian).
The four octets of the Update header are included in Update Request
(Operation 9), Update Response (10) and Update Acknowledge (11)
packets. They are not present in packet types in the original
Novell SAP specification.
Figure 6. Netware SAP packet format
Meyer & Sherry Standards Track [Page 16]
RFC 2091 Trigger RIP January 1997
6. Timers
Three timers are supported to handle the triggered update mechanism:
o Database timer.
o Hold down timer.
o Retransmission timer.
An optional over-subscription timer MAY also be supported.
6.1 Database Timer
Routes learned by an Update Response are normally considered to be
permanent.
When an Update Response with the Flush flag set is received, all
routes learned from that next hop router should start timing out as
if they had (just) been learned from a conventional Response (Command
2).
Namely each route exists while the database entry timer (usually 180
seconds) is running and is advertised on other interfaces as if still
present. The route is then advertised as unreachable while a further
hold down timer is allowed to expire.
6.2 Hold down Timer
A hold down timer of 120 seconds is started on a route:
o When the database timer for the route expires.
o When a formerly reachable route changes to unreachable in an
incoming response.
o When a circuit down is received from the circuit manager.
While the hold down timer is running routes are advertised as
unreachable on other interfaces.
When the hold down timer expires the route MAY be deleted from the
database PROVIDING its unreachability has been successfully
propagated to all WAN destinations, or the remaining WAN destinations
are in a circuit down state. If a route can not be deleted when the
hold-down timer expires, it MAY subsequently be deleted when each and
every peer is either up-to-date or is in a circuit down state.
Meyer & Sherry Standards Track [Page 17]
RFC 2091 Trigger RIP January 1997
If the hold down timer is already running it is NOT reset by any
events which would start the hold down timer.
6.3 Retransmission Timer
The routing task runs a retransmission timer:
o An Update Request packet is retransmitted periodically until an
Update Flush packet is received. An Update Flush packet is an
Update Response packet with the Flush field set. It need not
contain routes.
o An Update Response packet is retransmitted periodically until an
Update Acknowledge packet is received containing the same Sequence
Number.
With call set up time on the WAN being of the order of a second, a
value of 5 seconds for the retransmission timer is appropriate.
To prevent against failures in the circuit manager a limit SHOULD be
placed on the number of retransmissions. If no response has been
received after a configurable length of time (say 180 seconds) routes
via the next hop router are marked as unreachable, the hold down
timer is started and the entry is advertised as unreachable on other
interfaces.
The next hop router may then be polled with Update Requests at a
reduced frequency. A suitable poll interval would be of the order of
minutes rather than seconds. Alternatively an Update Request could
be initiated by administrative action. When a response is received
the routers should perform a complete exchange of routing
information.
6.4 Over-subscription Timer
Over-subscription is where there are more next hop routers to send
updates to on the WAN than there are channels. For example 3 next
hop routers accessed by an ISDN Basic Rate Interface (BRI) which can
only support 2 calls simultaneously.
To avoid route oscillation routes may NOT be marked unreachable
immediately on receiving a circuit down message from the circuit
manager. A timeout MAY be used to delay marking the routes
unreachable for sufficiently long to allow the calls to 'time
division multiplex' over the available channels. A timeout as long
as the regular 180 second RIP route timeout MAY be suitable. In
general the greater the over-subscription, the longer the time out
should be.
Meyer & Sherry Standards Track [Page 18]
RFC 2091 Trigger RIP January 1997
Implementations wishing to support over-subscription may implement
the delay within the circuit manager or within the routing
application.
If the delay is implemented within the routing application the
routing entries MUST NOT start timing out during the delay. This
allows the circuit up message to be ignored if the timeout after
receiving the circuit down has still to expire. This avoids any
confusion if the peer had previously issued a Route Flush command and
was part way through an update.
7. Security Considerations
The circuit manager is required to be provided with a list of
physical addresses to enable it to establish a call to the next hop
router. The circuit manager SHOULD only allow incoming calls to be
accepted from the same well defined list of routers.
Elsewhere in the system there will be a set of logical address and
physical address tuples to enable the network protocols to run over
the correct circuit. This may be a lookup table, or in some
instances there may be an algorithmic conversion between the two
addresses.
The routing (or service advertising) task MUST be provided with a
list of logical addresses to which triggered updates are to be sent
on the WAN. The list MAY be a subset of the list of next hop routers
maintained by the circuit manager.
RIP Version 2 also allows further authentication of Triggered RIP
packets.
Meyer & Sherry Standards Track [Page 19]
RFC 2091 Trigger RIP January 1997
Appendix A - Implementation Suggestion
This section suggests how the database might be structured to handle
Triggered RIP.
Each entry in the database is given a unique route number. Every
time a best route to a network changes, a global route number is
incremented and the changed route is given the new route number.
Note that this route number is completely internal to the router and
has no bearing on the Sequence Number sent in Update Responses sent
to the peer.
The route number size should be large enough so as not to wrap round
- or the routes can be renumbered before it becomes a problem. Re-
numbering requires that the database environment is stable (No Update
Responses are queued awaiting Acknowledgement)
Is is probably easier to manage the routes if they are also chained
together using a pointer to a later (and possibly also a pointer to
an earlier) entry which reflect the route number/age.
Performing a complete update then consists of running though the
routes from the oldest to the latest and sending them out in Update
Responses. Subsequent changes to the database are treated as sending
out only the changed entries (from the previous latest to the new
latest).
When allowing for several packets in flight care must be taken with
retransmissions. An Update Response 'retransmission' MAY be
different from the original. When transmitting a sequence of Update
Responses each Response packet contains a number of routes which is a
represented by a series of routes with consecutive route numbers.
Consider sending three Update Responses with Sequence numbers 10,11
and 12 each containing 10 routes:
Sequence Number Routes represented by Route Numbers
10 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
11 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
12 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
Meyer & Sherry Standards Track [Page 20]
RFC 2091 Trigger RIP January 1997
If these Update Responses are NOT acknowledged, but in the meantime
the routing database has changed and the routes represented by route
numbers 104, 112 - 116 and 127 have changed and been assigned new
route numbers 131 - 137, the retransmission will look like:
Sequence Number Routes represented by Route Numbers
10 101, 102, 103, 105, 106, 107, 108, 109, 110
11 111, 117, 118, 119, 120
12 121, 122, 123, 124, 125, 126, 128, 129, 130
13 131, 132, 133, 134, 135, 136, 137
To perform a retransmission it is VERY IMPORTANT that the
retransmission contains only the SUB-SET of route numbers which
currently apply. If there are NO suitable routes to send, it is not
necessary to send an empty retransmission.
An alternative 'retransmission' strategy is to always use different
sequence numbers when resending updates. Consider transmitting
packets with sequence numbers 10 through 20 - and responses are
received from all packets except those with sequence numbers 14 and
17. In this case only the data in packets 10 through 13 can be
considered to be acknowledged. The data from packet 14 onwards MUST
be re-sent and given new sequence numbers starting at 21.
References
[1] Hedrick. C., "Routing Information Protocol", RFC 1058, Rutgers
University, June 1988.
[2] Malkin. G., "RIP Version 2 - Carrying Additional Information",
RFC 1723, Xylogics, November 1994.
[3] Novell Incorporated., "IPX Router Specification", Version 1.20,
October 1993.
[4] Meyer. G., "Extensions to RIP to Support Demand Circuits",
Spider Systems, February 1994.
Meyer & Sherry Standards Track [Page 21]
RFC 2091 Trigger RIP January 1997
Authors' Address:
Gerry Meyer
Shiva
Stanwell Street
Edinburgh EH6 5NG
Scotland, UK
Phone: (UK) 131 554 9424
Fax: (UK) 131 467 7749
Email: gerry@europe.shiva.com
Steve Sherry
Xyplex
295 Foster St.
Littleton, MA 01460
Phone: (US) 508 952 4745
Fax: (US) 508 952 4887
Email: shs@xyplex.com
Meyer & Sherry Standards Track [Page 22]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -