📄 rfc1195.txt
字号:
Callon [Page 20]
RFC 1195 OSI ISIS for IP and Dual Environments December 1990
The routing domain field contains the Autonomous System number.
Strictly speaking, this is not necessary, since the IS-IS packets are
exchanged within a single AS only. However, inclusion of the AS
number in this address format will ensure correct operation in the
event that routers from separate routing domains/ASs are incorrectly
placed on the same link. The AS number in this context is used only
for definition of unique NSAP addresses, and does not imply any
coupling with exterior routing protocols.
The Area field must be assigned by the authority responsible for the
routing domain, such that each area in the routing domain must have a
unique Area value.
The ID must be assigned by the authority responsible for the routing
domain. The ID must be assigned such that every router in the routing
domain has a unique value. It is recommended that one of the
following methods is used:
1)use a unique IEEE 802 48 bit station ID
2)use the value hex "02 00" prepended to an IP address of the router.
IEEE 802 addresses, if used, must appear in IEEE canonical format.
Since the IEEE 802 station IDs are assigned to be globally unique,
use of these values clearly assures uniqueness in the area. Also, all
assigned IEEE 802 station IDs have the global/local bit set to zero.
Prepending the indicated pattern to the front of the IP address
therefore assures that format (2) illustrated above cannot produce
addresses which collide with format (1). Finally, to the extent that
IP addresses are also globally unique, format (2) will produce unique
IDs for routers.
The indicated hex value is specified in IEEE 802 canonical form [10].
In IEEE 802 addresses, the multicast bit is the least significant bit
of the first byte. The global/local bit is the next least significant
bit of the first byte. The indicated prefix therefore sets the
global/local bit to 1, and all other bits in the first two octets to
0.
Note that within an area, whether ISO addresses are configured into
the routers through ISO address assignment, or whether the ISO-style
address is generated directly from the AS number and IP address, all
routers within an area must have the same high order part of address
(AFI, ICD, DFI, AA, RD, and Area). This ISO-style address is used in
IS-IS Hello messages and is the basis by which routers recognize
whether neighbor nodes are in or out of their area.
Callon [Page 21]
RFC 1195 OSI ISIS for IP and Dual Environments December 1990
3.4 External Links
External connectivity (i.e., communications with routers outside of
the routing domain) is done only by level 2 routers. The ISO version
of IS-IS allows external OSI routes to be reported as "reachable
address prefixes" in level 2 LSPs. The integrated IS-IS also allows
external IP reachable addresses (i.e., IP addresses reachable via
inter-domain routing) to be reported in level 2 LSPs in the "IP
external reachability information" field. External OSI and external
IP routes are handled independently.
The routes announced in IP external reachability information entries
include all routes to outside of the routing domain. This includes
routes learned from OSPF, EGP, RIP, or any other external protocol.
External routes may make use of "internal" or "external" metrics.
Internal metrics are comparable with the metrics used for internal
routes. Thus in choosing between an internal route, and an external
route using internal metrics, the metric values may be directly
compared. In contrast, external metrics cannot be directly compared
with internal metrics. Any route defined solely using internal
metrics is always preferred to any route defined using external
metrics. When an external route using external metrics must be used,
the lowest value of the external metric is preferred regardless of
the internal cost to reach the appropriate exit point.
It is useful, in the operation of external routing protocols, to
provide a mechanism for border routers (i.e., routers in the same
routing domain, which have the ability to route externally to other
domains) to determine each other's existence, and to exchange
external information (in a form understood only by the border routers
themselves). This is made possible by inclusion of "inter-domain
routing protocol information" fields in level 2 LSPs. The inter-
domain routing protocol information field is not included in
pseudonode LSPs.
In general there may be multiple types of external inter-domain
routing protocol information exchanged between border routers. The
IS-IS therefore specifies that each occurance of the inter-domain
routing protocol information field include a "type" field, which
indicates the type of inter-domain routing protocol information
enclosed. Values to be used in the type field will be specified in
future versions of the "Assigned Numbers" RFC. Initial values for
this field are specified in Annex A of this specification.
Information contained in the inter-domain routing protocol
information field will be carried in level 2 LSPs, and will therefore
need to be stored by all level 2 routers in the domain. However, only
Callon [Page 22]
RFC 1195 OSI ISIS for IP and Dual Environments December 1990
those level 2 routers which are directly involved in external routing
will use this information. In designing the use of this field, it is
important to carefully consider the implications that this may have
on storage requirements in level 2 routers (including those level 2
routers which are not directly involved in external routing).
The protocols used to exchange routing information directly between
border routers, and external routers (in other routing domains /
autonomous systems) are outside of the scope of this specification.
3.5 Type of Service Routing
The integrated IS-IS protocol provides IP Type of Service (TOS)
routing, through use of the Quality of Service (QOS) feature of IS-
IS. This allows for routing on the basis of throughput (the default
metric), delay, expense, or residual error probability. Note than any
particular packet may be routed on the basis of any one of these four
metrics. Routing on the basis of general combinations of metrics is
not supported.
The support for TOS/QOS is optional. If a particular packet calls for
a specific TOS, and the correct path from the source to destination
is made up of routers all of which support that particular TOS, then
the packet will be routed on the optimal path. However, if there is
no path from the source to destination made up of routers which
support that particular type of service, then the packet will be
forwarded using the default metric instead. This allows for TOS
service in those environments where it is needed, while still
providing acceptable service in the case where an unsupported TOS is
requested.
NOTE - IP does not have a cost TOS. There is therefore no mapping of
IP TOS metrics which corresponds to the minimum cost metric.
The IP TOS field is mapped onto the four available metrics as
follows:
Bits 0-2 (Precedence): This field does not affect the route, but
rather may affect other aspects of packet
forwarding.
Bits 3 (Delay), 4 (Throughput) and 5 (Reliability):
000 (all normal) Use default metric
100 (low delay) Use delay metric
010 (high throughput) Use default metric
Callon [Page 23]
RFC 1195 OSI ISIS for IP and Dual Environments December 1990
001 (high reliabiity) Use reliability metric
other Use default metric
3.6 Multiple LSPs and SNPs
In some cases, IS-IS packets (specifically Link State Packets and
Complete Sequence Number Packets) may be too large to fit into one
packet. The OSI IS-IS [1] allows for LSPs and CSNPs to be split into
multiple packets. This is independent of ISO 8473 segmentation, and
is also independent of IP fragmentation. Use of independent multiple
packets has the advantages (with respect to segmentation or
fragmentation) that: (i) when information in the IS-IS changes, only
those packets effected need to be re-issued; (ii) when a single
packet is received, it can be processed without the need to receive
all other packets of the same type from the same router before
beginning processing.
The Integrated IS-IS makes use of the same multiple packet function,
as defined in [1]. IP-specific fields in IS-IS packets may be split
across multiple packets. As specified in section 5 ("Structure and
Encoding of PDUs"), some of the IP-specific fields (those which may
be fairly long) may be split into several occurences of the same
field, thereby allowing splitting of the fields across different
packets.
Multiple LSPs from the same router are distinguished by LSP number.
Generally, most variable length fields may occur in an LSP with any
LSP number. Some specific variable length fields may be required to
occur in LSP number 0. Except where explicitly stated otherwise, when
an IS-IS router issues multiple LSPs, the IP-specific fields may
occur in an LSP with any LSP number.
Complete Sequence Number Packets may be split into multiple packets,
with the range to which each packet applies explicitly reported in
the packet. Partial Sequence Number Packets are inherently partial,
and so can easily be split into multiple packets if this is
necessary. Again, where applicable, IP-specific fields may occur in
any SNP.
3.7 IP-Only Operation
For IP-only routers, the format for IS-IS packets remains unchanged.
However, there are some variable length fields from the IS-IS packets
that can be omitted. Specifically:
Callon [Page 24]
RFC 1195 OSI ISIS for IP and Dual Environments December 1990
IS-IS Hello Packets:
- no change
IS-IS Link State Packets:
- the "End Systems Neighbours" entries are omitted
- the "Prefix Neighbours" entries are omitted
IS-IS Sequence Number Packets:
- no change
3.8 Encapsulation
Future versions of the Integated IS-IS may specify optional
encapsulation mechanisms for partition repair, and for forwarding
packets through incompatible routers (i.e., for forwarding OSI
packets through IP-only routers, and forwarding IP packets through
OSI-only routers). The details of encapsulation and decapsulation are
for further study. Routers complying with the Integrated IS-IS are
not required to implement encapsulation nor decapsulation.
3.9 Authentication
The authentication field allows each IS-IS packet to contain
information used to authenticate the originator and/or contents of
the packet. The authentication information contained in each packet
is used to authenticate the entire packet, including OSI and IP
parts. If a packet is received which contains invalid authentication
information, then the entire packet is discarded. If an LSP or SNP is
split into multiple packets (as described in section 3.6), then each
is authenticated independently.
Use of the authentication field is optional. Routers are not required
to be able to interpret authentication information. As with other
fields in the integrated IS-IS, if a router does not implement
authentication then it will ignore any authentication field that may
be present in an IS-IS packet.
Annex D specifies a proposed use of the authentication field.
3.10 Order of Preference of Routes / Dijkstra Computation
We define the term "IP reachability entry" to mean the combination of
the [IP address, subnet
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -