📄 rfc1294.txt
字号:
RFC 1294 Multiprotocol over Frame Relay January 1992
Because of the inefficiencies of broadcasting in a Frame Relay
environment, a new address resolution variation was developed. It is
called Inverse ARP [11] and describes a method for resolving a
protocol address when the hardware address is already known. In
Frame Relay's case, the known hardware address is the DLCI. Using
Inverse ARP for Frame Relay follows the same pattern as ARP and RARP
use. That is the source hardware address is inserted at the
receiving station.
In our example, station A may use Inverse ARP to discover the
protocol address of the station associated with its DLCI 50. The
Inverse ARP request would be as follows:
InARP Request from A (DLCI 50)
ar$op 8 (InARP request)
ar$sha unknown
ar$spa pA
ar$tha 0x0C21 (DLCI 50)
ar$tpa unknown
When Station B receives this packet, it will modify the source
hardware address with the Q.922 address from the Frame Relay header.
This way, the InARP request from A will become:
ar$op 8 (InARP request)
ar$sha 0x1061
ar$spa pA
ar$tha 0x0C21
ar$tpa unknown.
Station B will format an Inverse ARP response and send it to station
A as it would for any ARP message.
11. IP over Frame Relay
Internet Protocol [9] (IP) datagrams sent over a Frame Relay network
conform to the encapsulation described previously. Within this
context, IP could be encapsulated in two different ways.
Bradley, Brown, Malis [Page 22]
RFC 1294 Multiprotocol over Frame Relay January 1992
1. NLPID value indicating IP
+-----------------------+-----------------------+
| Q.922 Address |
+-----------------------+-----------------------+
| Control (UI) 0x03 | NLPID = 0xCC |
+-----------------------+-----------------------+
| IP Packet . |
| . |
| . |
+-----------------------+-----------------------+
2. NLPID value indicating SNAP
+-----------------------+-----------------------+
| Q.922 Address |
+-----------------------+-----------------------+
| Control (UI) 0x03 | pad(s) 0x00 |
+-----------------------+-----------------------+
| NLPID = 0x80 | | SNAP Header
+-----------------------+ OUI = 0x00-00-00 + Indicating
| | IP
+-----------------------+-----------------------+
| PID = 0x0800 |
+-----------------------+-----------------------+
| IP packet |
| . |
| . |
| . |
+-----------------------+-----------------------+
Although both of these encapsulations are supported under the given
definitions, it is advantageous to select only one method as the
appropriate mechanism for encapsulating IP data. Therefore, IP data
shall be encapsulated using the NLPID value of 0xCC indicating IP as
shown in option 1 above. This (option 1) is more efficient in
transmission (48 fewer bits), and is consistent with the
encapsulation of IP in X.25.
12. Other Protocols over Frame Relay
As with IP encapsulation, there are alternate ways to transmit
various protocols within the scope of this definition. To eliminate
the conflicts, the SNAP encapsulation is only used if no NLPID value
is defined for the given protocol.
As an example of how this works, ISO CLNP has a NLPID defined (0x81).
Therefore, the NLPID field will indicate ISO CLNP and the data packet
Bradley, Brown, Malis [Page 23]
RFC 1294 Multiprotocol over Frame Relay January 1992
will follow immediately. The frame would be as follows:
+----------------------+----------------------+
| Q.922 Address |
+----------------------+----------------------+
| Control (0x03) | NLPID - 0x81 (CLNP) |
+---------------------------------------------+
| CLNP packet |
| . |
| . |
+---------------------------------------------+
13. Bridging in a Frame Relay network
A Frame Relay interface acting as a bridge must be able to flood,
forward, and filter packets.
Flooding is performed by sending the packet to all possible
destinations. In the Frame Relay environment this means sending the
packet through each relevant DLC.
To forward a packet, a bridge must be able to associate a destination
MAC address with a DLC. It is unreasonable and perhaps impossible to
require bridges to statically configure an association of every
possible destination MAC address with a DLC. Therefore, Frame Relay
bridges must provide enough information to allow a Frame Relay
interface to dynamically learn about foreign destinations beyond the
set of Frame Relay stations.
To accomplish dynamic learning, a bridged packet shall conform to the
encapsulation described within section 7. In this way, the receiving
Frame Relay interface will know to look into the bridged packet and
learn the association between foreign destination and Frame Relay
station.
14. For Future Study
It may be desirable for the two ends of a connection to have the
capability to negotiate end-to-end configuration and service
parameters. The actual protocol and parameters to be negotiated will
be a topic of future RFCs.
15. Backward Compatibility
This section is included in this RFC for completeness only. It is
not intended to suggest additional requirements.
Some existing Frame Relay stations use the NLPID value of 0xCE to
Bradley, Brown, Malis [Page 24]
RFC 1294 Multiprotocol over Frame Relay January 1992
indicate an escape to Ethernet Packet Types as defined in the latest
version of the Assigned Numbers (RFC-1060) [7]. In this case, the
frame will have the following format:
+-----------------------------+
| Q.922 Address |
+-- --+
| |
+-----------------------------+
| Control (UI = 0x03) |
+-----------------------------+
| Optional Pad(s) (0x00) |
+-----------------------------+
| NLPID (0xCE) |
+-----------------------------+
| Ethertype |
+- -+
| |
+-----------------------------+
| . |
| . |
| Data |
| . |
| . |
+-----------------------------+
| Frame Check Sequence |
+-- . --+
| (two octets) |
+-----------------------------+
The Ethertype field is a 16-bit value used to identify a protocol
type for the following PDU.
In order to be fully interoperable with stations that use this
encoding, Frame Relay stations may recognize the NLPID value of 0xCE
and interpret the following two byte Ethertype. It is never
necessary to generate this encapsulation format only to properly
interpret it's meaning.
For example, IP encapsulated with this NLPID value will have the
following format:
Bradley, Brown, Malis [Page 25]
RFC 1294 Multiprotocol over Frame Relay January 1992
+-----------------------+-----------------------+
|Q.922 Address |
+-----------------------+-----------------------+
|Control (UI) 0x03 | NLPID 0xCE |
+-----------------------+-----------------------+
|Ethertype [7] 0x0800 |
+-----------------------+-----------------------+
| IP Packet |
| . |
| . |
+-----------------------+-----------------------+
16. Appendix
List of Known NLPIDs
0x00 Null Network Layer or Inactive Set
(not used with Frame Relay)
0x80 SNAP
0x81 ISO CLNP
0x82 ISO ESIS
0x83 ISO ISIS
0xCC Internet IP
0xCE EtherType - unofficial temporary use
List of PIDs of OUI 00-80-C2
with preserved FCS w/o preserved FCS Media
------------------ ----------------- --------------
0x00-01 0x00-07 802.3/Ethernet
0x00-02 0x00-08 802.4
0x00-03 0x00-09 802.5
0x00-04 0x00-0A FDDI
0x00-05 0x00-0B 802.6
0x00-0D Fragments
0x00-0E BPDUs
17. References
[1] International Telegraph and Telephone Consultative Committee,
"ISDN Data Link Layer Specification for Frame Mode Bearer
Services", CCITT Recommendation Q.922, 19 April 1991 .
[2] American National Standard For Telecommunications - Integrated
Services Digital Network - Core Aspects of Frame Protocol for
Use with Frame Relay Bearer Service, ANSI T1.618-1991, 18 June
1991.
Bradley, Brown, Malis [Page 26]
RFC 1294 Multiprotocol over Frame Relay January 1992
[3] Information technology - Telecommunications and Information
Exchange between systems - Protocol Identification in the
Network Layer, ISO/IEC TR 9577: 1990 (E) 1990-10-15.
[4] Baker, Fred, "Point to Point Protocol Extensions for Bridging",
Point to Point Working Group, RFC-1220, April 1991.
[5] International Standard, Information Processing Systems - Local
Area Networks - Logical Link Control, ISO 8802-2: 1989 (E), IEEE
Std 802.2-1989, 1989-12-31.
[6] Plummer, David C., An Ethernet Address Resolution Protocol",
RFC-826, November 1982.
[7] Reynolds, J. and Postel, J., "Assigned Numbers", RFC-1060, ISI,
March 1990.
[8] Finlayson, Mann, Mogul, Theimer, "A Reverse Address Resolution
Protocol", RFC-903, Stanford University, June 1984.
[9] Postel, J. and Reynolds, J., "A Standard for the Transmission of
IP Datagrams over IEEE 802 Networks", RFC-1042, ISI, February
1988.
[10] IEEE, "IEEE Standard for Local and Metropolitan Area Networks:
Overview and architecture", IEEE Standards 802-1990.
[11] Bradley, T., and C. Brown, "Inverse Address Resolution
Protocol", RFC-1293, Wellfleet Communications, Inc., January
1992.
18. Security Considerations
Security issues are not addressed in this memo.
19. Authors' Addresses
Terry Bradley
Wellfleet Communications, Inc.
15 Crosby Drive
Bedford, MA 01730
Phone: (617) 275-2400
Email: tbradley@wellfleet.com
Bradley, Brown, Malis [Page 27]
RFC 1294 Multiprotocol over Frame Relay January 1992
Caralyn Brown
Wellfleet Communications, Inc.
15 Crosby Drive
Bedford, MA 01730
Phone: (617) 275-2400
Email: cbrown@wellfleet.com
Andrew G. Malis
BBN Communications
150 CambridgePark Drive
Cambridge, MA 02140
Phone: (617) 873-3419
Email: malis@bbn.com
Bradley, Brown, Malis [Page 28]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -