📄 rfc2796.txt
字号:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attr. Flags |Attr. Type Code| Length | value ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Length is the number of octets.
When a RR reflects a route, it must prepend the local CLUSTER_ID to
the CLUSTER_LIST. If the CLUSTER_LIST is empty, it must create a new
one. Using this attribute an RR can identify if the routing
information is looped back to the same cluster due to mis-
configuration. If the local CLUSTER_ID is found in the cluster-list,
the advertisement received should be ignored.
8. Implementation Considerations
Care should be taken to make sure that none of the BGP path
attributes defined above can be modified through configuration when
exchanging internal routing information between RRs and Clients and
Non-Clients. Their modification could potential result in routing
loops.
In addition, when a RR reflects a route, it should not modify the
following path attributes: NEXT_HOP, AS_PATH, LOCAL_PREF, and MED.
Their modification could potential result in routing loops.
Bates, et al. Standards Track [Page 6]
RFC 2796 BGP Route Reflection April 2000
9. Configuration and Deployment Considerations
The BGP protocol provides no way for a Client to identify itself
dynamically as a Client of an RR. The simplest way to achieve this
is by manual configuration.
One of the key component of the route reflection approach in
addressing the scaling issue is that the RR summarizes routing
information and only reflects its best path.
Both MEDs and IGP metrics may impact the BGP route selection.
Because MEDs are not always comparable and the IGP metric may differ
for each router, with certain route reflection topologies the route
reflection approach may not yield the same route selection result as
that of the full IBGP mesh approach. A way to make route selection
the same as it would be with the full IBGP mesh approach is to make
sure that route reflectors are never forced to perform the BGP route
selection based on IGP metrics which are significantly different from
the IGP metrics of their clients, or based on incomparable MEDs. The
former can be achieved by configuring the intra-cluster IGP metrics
to be better than the inter-cluster IGP metrics, and maintaining full
mesh within the cluster. The latter can be achieved by:
o setting the local preference of a route at the border router to
reflect the MED values.
o or by making sure the AS-path lengths from different ASs are
different when the AS-path length is used as a route selection
criteria.
o or by configuring community based policies using which the
reflector can decide on the best route.
One could argue though that the latter requirement is overly
restrictive, and perhaps impractical in some cases. One could
further argue that as long as there are no routing loops, there are
no compelling reasons to force route selection with route reflectors
to be the same as it would be with the full IBGP mesh approach.
To prevent routing loops and maintain consistent routing view, it is
essential that the network topology be carefully considered in
designing a route reflection topology. In general, the route
reflection topology should congruent with the network topology when
there exist multiple paths for a prefix. One commonly used approach
is the POP-based reflection, in which each POP maintains its own
route reflectors serving clients in the POP, and all route reflectors
are fully meshed. In addition, clients of the reflectors in each POP
Bates, et al. Standards Track [Page 7]
RFC 2796 BGP Route Reflection April 2000
are often fully meshed for the purpose of optimal intra-POP routing,
and the intra-POP IGP metrics are configured to be better than the
inter-POP IGP metrics.
10. Security Considerations
This extension to BGP does not change the underlying security issues
inherent in the existing IBGP [5].
11. Acknowledgments
The authors would like to thank Dennis Ferguson, John Scudder, Paul
Traina and Tony Li for the many discussions resulting in this work.
This idea was developed from an earlier discussion between Tony Li
and Dimitri Haskin.
In addition, the authors would like to acknowledge valuable review
and suggestions from Yakov Rekhter on this document, and helpful
comments from Tony Li, Rohit Dube, and John Scudder on Section 9, and
from Bruce Cole.
13. References
[1] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)",
RFC 1771, March 1995.
[2] Haskin, D., "A BGP/IDRP Route Server alternative to a full mesh
routing", RFC 1863, October 1995.
[3] Traina, P., "Limited Autonomous System Confederations for BGP",
RFC 1965, June 1996.
[4] Bates, T. and R. Chandra, "BGP Route Reflection An alternative
to full mesh IBGP", RFC 1966, June 1996.
[5] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
Signature Option", RFC 2385, August 1998.
Bates, et al. Standards Track [Page 8]
RFC 2796 BGP Route Reflection April 2000
14. Authors' Addresses
Tony Bates
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
EMail: tbates@cisco.com
Ravi Chandra
Redback Networks Inc.
350 Holger Way.
San Jose, CA 95134
EMail: rchandra@redback.com
Enke Chen
Redback Networks Inc.
350 Holger Way.
San Jose, CA 95134
EMail: enke@redback.com
Bates, et al. Standards Track [Page 9]
RFC 2796 BGP Route Reflection April 2000
Appendix Comparison with RFC 1966
Several terminologies related to route reflection are clarified, and
the reference to EBGP routes/peers are removed.
The handling of a routing information loop (due to route reflection)
by a receiver is clarified and made more consistent.
The addition of a CLUSTER_ID to the CLUSTER_LIST has been changed
from "append" to "prepend" to reflect the deployed code.
The section on "Configuration and Deployment Considerations" has been
expanded to address several operational issues.
Bates, et al. Standards Track [Page 10]
RFC 2796 BGP Route Reflection April 2000
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Bates, et al. Standards Track [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -