📄 rfc2796.txt
字号:
Network Working Group T. Bates
Request for Comments: 2796 Cisco Systems
Updates: 1966 R. Chandra
Category: Standards Track E. Chen
Redback Networks
April 2000
BGP Route Reflection -
An Alternative to Full Mesh IBGP
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
The Border Gateway Protocol [1] is an inter-autonomous system routing
protocol designed for TCP/IP internets. Currently in the Internet BGP
deployments are configured such that that all BGP speakers within a
single AS must be fully meshed so that any external routing
information must be re-distributed to all other routers within that
AS. This represents a serious scaling problem that has been well
documented with several alternatives proposed [2,3].
This document describes the use and design of a method known as
"Route Reflection" to alleviate the the need for "full mesh" IBGP.
1. Introduction
Currently in the Internet, BGP deployments are configured such that
that all BGP speakers within a single AS must be fully meshed and any
external routing information must be re-distributed to all other
routers within that AS. For n BGP speakers within an AS that
requires to maintain n*(n-1)/2 unique IBGP sessions. This "full
mesh" requirement clearly does not scale when there are a large
number of IBGP speakers each exchanging a large volume of routing
information, as is common in many of todays internet networks.
Bates, et al. Standards Track [Page 1]
RFC 2796 BGP Route Reflection April 2000
This scaling problem has been well documented and a number of
proposals have been made to alleviate this [2,3]. This document
represents another alternative in alleviating the need for a "full
mesh" and is known as "Route Reflection". This approach allows a BGP
speaker (known as "Route Reflector") to advertise IBGP learned routes
to certain IBGP peers. It represents a change in the commonly
understood concept of IBGP, and the addition of two new optional
transitive BGP attributes to prevent loops in routing updates.
This document is a revision of RFC1966 [4], and it includes editorial
changes, clarifications and corrections based on the deployment
experience with route reflection. These revisions are summarized in
the Appendix.
2. Design Criteria
Route Reflection was designed to satisfy the following criteria.
o Simplicity
Any alternative must be both simple to configure as well as
understand.
o Easy Transition
It must be possible to transition from a full mesh
configuration without the need to change either topology or AS.
This is an unfortunate management overhead of the technique
proposed in [3].
o Compatibility
It must be possible for non compliant IBGP peers to continue be
part of the original AS or domain without any loss of BGP
routing information.
These criteria were motivated by operational experiences of a very
large and topology rich network with many external connections.
3. Route Reflection
The basic idea of Route Reflection is very simple. Let us consider
the simple example depicted in Figure 1 below.
Bates, et al. Standards Track [Page 2]
RFC 2796 BGP Route Reflection April 2000
+-------+ +-------+
| | IBGP | |
| RTR-A |--------| RTR-B |
| | | |
+-------+ +-------+
\ /
IBGP \ ASX / IBGP
\ /
+-------+
| |
| RTR-C |
| |
+-------+
Figure 1: Full Mesh IBGP
In ASX there are three IBGP speakers (routers RTR-A, RTR-B and RTR-
C). With the existing BGP model, if RTR-A receives an external route
and it is selected as the best path it must advertise the external
route to both RTR-B and RTR-C. RTR-B and RTR-C (as IBGP speakers)
will not re-advertise these IBGP learned routes to other IBGP
speakers.
If this rule is relaxed and RTR-C is allowed to advertise IBGP
learned routes to IBGP peers, then it could re-advertise (or reflect)
the IBGP routes learned from RTR-A to RTR-B and vice versa. This
would eliminate the need for the IBGP session between RTR-A and RTR-B
as shown in Figure 2 below.
+-------+ +-------+
| | | |
| RTR-A | | RTR-B |
| | | |
+-------+ +-------+
\ /
IBGP \ ASX / IBGP
\ /
+-------+
| |
| RTR-C |
| |
+-------+
Figure 2: Route Reflection IBGP
The Route Reflection scheme is based upon this basic principle.
Bates, et al. Standards Track [Page 3]
RFC 2796 BGP Route Reflection April 2000
4. Terminology and Concepts
We use the term "Route Reflection" to describe the operation of a BGP
speaker advertising an IBGP learned route to another IBGP peer. Such
a BGP speaker is said to be a "Route Reflector" (RR), and such a
route is said to be a reflected route.
The internal peers of a RR are divided into two groups:
1) Client Peers
2) Non-Client Peers
A RR reflects routes between these groups, and may reflect routes
among client peers. A RR along with its client peers form a Cluster.
The Non-Client peer must be fully meshed but the Client peers need
not be fully meshed. Figure 3 depicts a simple example outlining the
basic RR components using the terminology noted above.
/ - - - - - - - - - - - - - -
| Cluster |
+-------+ +-------+
| | | | | |
| RTR-A | | RTR-B |
| |Client | |Client | |
+-------+ +-------+
| \ / |
IBGP \ / IBGP
| \ / |
+-------+
| | | |
| RTR-C |
| | RR | |
+-------+
| / \ |
- - - - - /- - -\- - - - - - /
IBGP / \ IBGP
+-------+ +-------+
| RTR-D | IBGP | RTR-E |
| Non- |---------| Non- |
|Client | |Client |
+-------+ +-------+
Figure 3: RR Components
Bates, et al. Standards Track [Page 4]
RFC 2796 BGP Route Reflection April 2000
5. Operation
When a RR receives a route from an IBGP peer, it selects the best
path based on its path selection rule. After the best path is
selected, it must do the following depending on the type of the peer
it is receiving the best path from:
1) A Route from a Non-Client IBGP peer
Reflect to all the Clients.
2) A Route from a Client peer
Reflect to all the Non-Client peers and also to the Client
peers. (Hence the Client peers are not required to be fully
meshed.)
An Autonomous System could have many RRs. A RR treats other RRs just
like any other internal BGP speakers. A RR could be configured to
have other RRs in a Client group or Non-client group.
In a simple configuration the backbone could be divided into many
clusters. Each RR would be configured with other RRs as Non-Client
peers (thus all the RRs will be fully meshed.). The Clients will be
configured to maintain IBGP session only with the RR in their
cluster. Due to route reflection, all the IBGP speakers will receive
reflected routing information.
It is possible in a Autonomous System to have BGP speakers that do
not understand the concept of Route-Reflectors (let us call them
conventional BGP speakers). The Route-Reflector Scheme allows such
conventional BGP speakers to co-exist. Conventional BGP speakers
could be either members of a Non-Client group or a Client group. This
allows for an easy and gradual migration from the current IBGP model
to the Route Reflection model. One could start creating clusters by
configuring a single router as the designated RR and configuring
other RRs and their clients as normal IBGP peers. Additional clusters
can be created gradually.
6. Redundant RRs
Usually a cluster of clients will have a single RR. In that case, the
cluster will be identified by the ROUTER_ID of the RR. However, this
represents a single point of failure so to make it possible to have
multiple RRs in the same cluster, all RRs in the same cluster can be
configured with a 4-byte CLUSTER_ID so that an RR can discard routes
from other RRs in the same cluster.
Bates, et al. Standards Track [Page 5]
RFC 2796 BGP Route Reflection April 2000
7. Avoiding Routing Information Loops
When a route is reflected, it is possible through mis-configuration
to form route re-distribution loops. The Route Reflection method
defines the following attributes to detect and avoid routing
information loops:
ORIGINATOR_ID
ORIGINATOR_ID is a new optional, non-transitive BGP attribute of Type
code 9. This attribute is 4 bytes long and it will be created by a RR
in reflecting a route. This attribute will carry the ROUTER_ID of
the originator of the route in the local AS. A BGP speaker should not
create an ORIGINATOR_ID attribute if one already exists. A router
which recognizes the ORIGINATOR_ID attribute should ignore a route
received with its ROUTER_ID as the ORIGINATOR_ID.
CLUSTER_LIST
Cluster-list is a new optional, non-transitive BGP attribute of Type
code 10. It is a sequence of CLUSTER_ID values representing the
reflection path that the route has passed. It is encoded as follows:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -