📄 rfc2689.txt
字号:
use of this relationship by encoding these fields only when the
second order difference is non-zero [7].
6. Announcement Protocols Used by Applications
As argued, the compressor can operate best if it can make use of
information that clearly identifies real-time streams and provides
information about the payload data format in use.
If these systems are routers, this consent must be installed as
router state; if these systems are hosts, it must be known to their
networking kernels. Sources of real-time information flows are
already describing characteristics of these flows to their kernels
and to the routers in the form of TSpecs in RSVP PATH messages [4].
Since these messages make use of the router alert option, they are
seen by all routers on the path; path state about the packet stream
is normally installed at each of these routers that implement RSVP.
Additional RSVP objects could be defined that are included in PATH
messages by those applications that desire good performance over low-
bitrate links; these objects would be coded to be ignored by routers
that are not interested in them (class number 11bbbbbb as defined in
[4], section 3.10).
Note that the path state is available in the routers even when no
reservation is made; this allows informed compression of best-effort
traffic. It is not quite clear, though, how path state could be torn
down quickly when a source ceases to transmit.
Bormann Informational [Page 10]
RFC 2689 Integrated Services over Low-bitrate Links September 1999
7. Elements of Hop-By-Hop Negotiation Protocols
The IP header compression specification attempts to account for
simplex and multicast links by providing information about the
compressed streams only in the forward direction. E.g., a full
IP/UDP header must be sent after F_MAX_TIME (currently 3 seconds),
which is a negligible total overhead (e.g. one full header every 150
G.723.1 packets), but must be considered carefully in scheduling the
real-time transmissions. Both simplex and multicast links are not
prevailing in the low-bitrate environment (although multicast
functionality may become more important with wireless systems); in
this document, we therefore assume full-duplex capability.
As compression techniques will improve, a negotiation between the two
peers on the link would provide the best flexibility in
implementation complexity and potential for extensibility. The peer
routers/hosts can decide which real-time packet streams are to be
compressed, which header fields are not to be sent at all, which
multiplexing information should be used on the link, and how the
remaining header fields should be encoded. PPP, a well-tried suite
of negotiation protocols, is already used on most of the low-bitrate
links and seems to provide the obvious approach. Cooperation from
PPP is also needed to negotiate the use of real-time encapsulations
between systems that are not configured to automatically do so.
Therefore, PPP options that can be negotiated at the link setup (LCP)
phase are included in [8], [9], and [10].
8. Security Considerations
Header compression protocols that make use of assumptions about
application protocols need to be carefully analyzed whether it is
possible to subvert other applications by maliciously or
inadvertently enabling their use.
It is generally not possible to do significant hop-by-hop header
compression on encrypted streams. With certain security policies, it
may be possible to run an encrypted tunnel to a network access server
that does header compression on the decapsulated packets and sends
them over an encrypted link encapsulation; see also the short mention
of interactions between real-time encapsulation and encryption in
section 4 above. If the security requirements permit, a special RTP
payload data format that encrypts only the data may preferably be
used.
Bormann Informational [Page 11]
RFC 2689 Integrated Services over Low-bitrate Links September 1999
9. References
[1] Handley, M., Crowcroft, J., Bormann, C. and J. Ott, "The
Internet Multimedia Conferencing Architecture", Work in
Progress.
[2] Degermark, M., Nordgren, B. and S. Pink, "IP Header
Compression", RFC 2507, February 1999.
[3] Scott Petrack, Ed Ellesson, "Framework for C/RTP: Compressed
RTP Using Adaptive Differential Header Compression",
contribution to the mailing list rem-conf@es.net, February
1996.
[4] Braden, R., Zhang, L., Berson, S., Herzog, S. and S. Jamin,
"Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
Specification", RFC 2205, September 1997.
[5] Sklower, K., Lloyd, B., McGregor, G., Carr, D. and T.
Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August
1996.
[6] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", RFC
1889, January 1996.
[7] Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links", RFC 2508, February 1999.
[8] Bormann, C., "The Multi-Class Extension to Multi-Link PPP", RFC
2686, September 1999.
[9] Bormann, C., "PPP in a Real-time Oriented HDLC-like Framing",
RFC 2687, September 1999.
[10] Engan, M., Casner, S. and C. Bormann, "IP Header Compression
over PPP", RFC 2509, February 1999.
[11] Wroclawski, J., "Specification of the Controlled-Load Network
Element Service", RFC 2211, September 1997.
[12] Shenker, S., Partridge, C. and R. Guerin. "Specification of
Guaranteed Quality of Service", RFC 2212, September 1997.
Bormann Informational [Page 12]
RFC 2689 Integrated Services over Low-bitrate Links September 1999
[13] ITU-T Recommendation H.223, "Multiplexing protocol for low bit
rate multimedia communication", International Telecommunication
Union, Telecommunication Standardization Sector (ITU-T), March
1996.
[14] ITU-T Recommendation H.324, "Terminal for low bit rate
multimedia communication", International Telecommunication
Union, Telecommunication Standardization Sector (ITU-T), March
1996.
[15] ITU-T Recommendation H.245, "Control protocol for multimedia
communication", International Telecommunication Union,
Telecommunication Standardization Sector (ITU-T), March 1996.
10. Author's Address
Carsten Bormann
Universitaet Bremen FB3 TZI
Postfach 330440
D-28334 Bremen, GERMANY
Phone: +49.421.218-7024
Fax: +49.421.218-7000
EMail: cabo@tzi.org
Acknowledgements
Much of the early discussion that led to this document was done with
Scott Petrack and Cary Fitzgerald. Steve Casner, Mikael Degermark,
Steve Jackowski, Dave Oran, the other members of the ISSLL subgroup
on low bitrate links (ISSLOW), and in particular the ISSLL WG co-
chairs Eric Crawley and John Wroclawski have helped in making this
architecture a reality.
Bormann Informational [Page 13]
RFC 2689 Integrated Services over Low-bitrate Links September 1999
Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Bormann Informational [Page 14]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -