📄 rfc2863.txt
字号:
interfaces and fixed-length-transmission interfaces.
It should be noted that the octet counters in the ifTable aggregate
octet counts for unicast and non-unicast packets into a single octet
counter per direction (received/transmitted). Thus, with the above
definition of fixed-length-transmission interfaces, where such
interfaces which support non-unicast packets, separate counts of
unicast and multicast/broadcast transmissions can only be maintained
in a media-specific MIB module.
3.1.5. Interface Numbering
MIB-II defines an object, ifNumber, whose value represents:
"The number of network interfaces (regardless of their
current state) present on this system."
Each interface is identified by a unique value of the ifIndex object,
and the description of ifIndex constrains its value as follows:
"Its value ranges between 1 and the value of ifNumber. The
value for each interface must remain constant at least from
one re-initialization of the entity's network management
system to the next re-initialization."
McCloghrie & Kastenholz Standards Track [Page 10]
RFC 2863 The Interfaces Group MIB June 2000
This constancy requirement on the value of ifIndex for a particular
interface is vital for efficient management. However, an increasing
number of devices allow for the dynamic addition/removal of network
interfaces. One example of this is a dynamic ability to configure
the use of SLIP/PPP over a character-oriented port. For such dynamic
additions/removals, the combination of the constancy requirement and
the restriction that the value of ifIndex is less than ifNumber is
problematic.
Redefining ifNumber to be the largest value of ifIndex was rejected
since it would not help. Such a re-definition would require ifNumber
to be deprecated and the utility of the redefined object would be
questionable. Alternatively, ifNumber could be deprecated and not
replaced. However, the deprecation of ifNumber would require a
change to that portion of ifIndex's definition which refers to
ifNumber. So, since the definition of ifIndex must be changed anyway
in order to solve the problem, changes to ifNumber do not benefit the
solution.
The solution adopted in this memo is just to delete the requirement
that the value of ifIndex must be less than the value of ifNumber,
and to retain ifNumber with its current definition. This is a minor
change in the semantics of ifIndex; however, all existing agent
implementations conform to this new definition, and in the interests
of not requiring changes to existing agent implementations and to the
many existing media-specific MIBs, this memo assumes that this change
does not require ifIndex to be deprecated. Experience indicates that
this assumption does "break" a few management applications, but this
is considered preferable to breaking all agent implementations.
This solution also results in the possibility of "holes" in the
ifTable, i.e., the ifIndex values of conceptual rows in the ifTable
are not necessarily contiguous, but SNMP's GetNext (and GetBulk)
operation easily deals with such holes. The value of ifNumber still
represents the number of conceptual rows, which increases/decreases
as new interfaces are dynamically added/removed.
The requirement for constancy (between re-initializations) of an
interface's ifIndex value is met by requiring that after an interface
is dynamically removed, its ifIndex value is not re-used by a
*different* dynamically added interface until after the following
re-initialization of the network management system. This avoids the
need for assignment (in advance) of ifIndex values for all possible
interfaces that might be added dynamically. The exact meaning of a
"different" interface is hard to define, and there will be gray
areas. Any firm definition in this document would likely turn out to
be inadequate. Instead, implementors must choose what it means in
their particular situation, subject to the following rules:
McCloghrie & Kastenholz Standards Track [Page 11]
RFC 2863 The Interfaces Group MIB June 2000
(1) a previously-unused value of ifIndex must be assigned to a
dynamically added interface if an agent has no knowledge of
whether the interface is the "same" or "different" to a
previously incarnated interface.
(2) a management station, not noticing that an interface has gone
away and another has come into existence, must not be confused
when calculating the difference between the counter values
retrieved on successive polls for a particular ifIndex value.
When the new interface is the same as an old interface, but a
discontinuity in the value of the interface's counters cannot be
avoided, the ifTable has (until now) required that a new ifIndex
value be assigned to the returning interface. That is, either all
counter values have had to be retained during the absence of an
interface in order to use the same ifIndex value on that interface's
return, or else a new ifIndex value has had to be assigned to the
returning interface. Both alternatives have proved to be burdensome
to some implementations:
(1) maintaining the counter values may not be possible (e.g., if
they are maintained on removable hardware),
(2) using a new ifIndex value presents extra work for management
applications. While the potential need for such extra work is
unavoidable on agent re-initializations, it is desirable to
avoid it between re-initializations.
To address this, a new object, ifCounterDiscontinuityTime, has been
defined to record the time of the last discontinuity in an
interface's counters. By monitoring the value of this new object, a
management application can now detect counter discontinuities without
the ifIndex value of the interface being changed. Thus, an agent
which implements this new object should, when a new interface is the
same as an old interface, retain that interface's ifIndex value and
update if necessary the interface's value of
ifCounterDiscontinuityTime. With this new object, a management
application must, when calculating differences between counter values
retrieved on successive polls, discard any calculated difference for
which the value of ifCounterDiscontinuityTime is different for the
two polls. (Note that this test must be performed in addition to the
normal checking of sysUpTime to detect an agent re-initialization.)
Since such discards are a waste of network management processing and
bandwidth, an agent should not update the value of
ifCounterDiscontinuityTime unless absolutely necessary.
While defining this new object is a change in the semantics of the
ifTable counter objects, it is impractical to deprecate and redefine
McCloghrie & Kastenholz Standards Track [Page 12]
RFC 2863 The Interfaces Group MIB June 2000
all these counters because of their wide deployment and importance.
Also, a survey of implementations indicates that many agents and
management applications do not correctly implement this aspect of the
current semantics (because of the burdensome issues mentioned above),
such that the practical implications of such a change is small.
Thus, this breach of the SMI's rules is considered to be acceptable.
Note, however, that the addition of ifCounterDiscontinuityTime does
not change the fact that:
it is necessary at certain times for the assignment of
ifIndex values to change on a re-initialization of the agent
(such as a reboot).
The possibility of ifIndex value re-assignment must be accommodated
by a management application whenever the value of sysUpTime is reset
to zero.
Note also that some agents support multiple "naming scopes", e.g.,
for an SNMPv1 agent, multiple values of the SNMPv1 community string.
For such an agent (e.g., a CNM agent which supports a different
subset of interfaces for different customers), there is no required
relationship between the ifIndex values which identify interfaces in
one naming scope and those which identify interfaces in another
naming scope. It is the agent's choice as to whether the same or
different ifIndex values identify the same or different interfaces in
different naming scopes.
Because of the restriction of the value of ifIndex to be less than
ifNumber, interfaces have been numbered with small integer values.
This has led to the ability by humans to use the ifIndex values as
(somewhat) user-friendly names for network interfaces (e.g.,
"interface number 3"). With the relaxation of the restriction on the
value of ifIndex, there is now the possibility that ifIndex values
could be assigned as very large numbers (e.g., memory addresses).
Such numbers would be much less user-friendly. Therefore, this memo
recommends that ifIndex values still be assigned as (relatively)
small integer values starting at 1, even though the values in use at
any one time are not necessarily contiguous. (Note that this makes
remembering which values have been assigned easy for agents which
dynamically add new interfaces)
A new problem is introduced by representing each sub-layer as an
ifTable entry. Previously, there usually was a simple, direct,
mapping of interfaces to the physical ports on systems. This mapping
would be based on the ifIndex value. However, by having an ifTable
entry for each interface sub-layer, mapping from interfaces to
physical ports becomes increasingly problematic.
McCloghrie & Kastenholz Standards Track [Page 13]
RFC 2863 The Interfaces Group MIB June 2000
To address this issue, a new object, ifName, is added to the MIB.
This object contains the device's local name (e.g., the name used at
the device's local console) for the interface of which the relevant
entry in the ifTable is a component. For example, consider a router
having an interface composed of PPP running over an RS-232 port. If
the router uses the name "wan1" for the (combined) interface, then
the ifName objects for the corresponding PPP and RS-232 entries in
the ifTable would both have the value "wan1". On the other hand, if
the router uses the name "wan1.1" for the PPP interface and "wan1.2"
for the RS-232 port, then the ifName objects for the corresponding
PPP and RS-232 entries in the ifTable would have the values "wan1.1"
and "wan1.2", respectively. As an another example, consider an agent
which responds to SNMP queries concerning an interface on some other
(proxied) device: if such a proxied device associates a particular
identifier with an interface, then it is appropriate to use this
identifier as the value of the interface's ifName, since the local
console in this case is that of the proxied device.
In contrast, the existing ifDescr object is intended to contain a
description of an interface, whereas another new object, ifAlias,
provides a location in which a network management application can
store a non-volatile interface-naming value of its own choice. The
ifAlias object allows a network manager to give one or more
interfaces their own unique names, irrespective of any interface-
stack relationship. Further, the ifAlias name is non-volatile, and
thus an interface must retain its assigned ifAlias value across
reboots, even if an agent chooses a new ifIndex value for the
interface.
3.1.6. Counter Size
As the speed of network media increase, the minimum time in which a
32 bit counter will wrap decreases. For example, a 10Mbs stream of
back-to-back, full-size packets causes ifInOctets to wrap in just
over 57 minutes; at 100Mbs, the minimum wrap time is 5.7 minutes, and
at 1Gbs, the minimum is 34 seconds. Requiring that interfaces be
polled frequently enough not to miss a counter wrap is increasingly
problematic.
A rejected solution to this problem was to scale the counters; for
example, ifInOctets could be changed to count received octets in,
say, 1024 byte blocks. While it would provide acceptable
functionality at high rates of the counted-events, at low rates it
suffers. If there is little traffic on an interface, there might be
a significant interval before enough of the counted-events occur to
cause the scaled counter to be incremented. Traffic would then
appear to be very bursty, leading to incorrect conclusions of the
network's performance.
McCloghrie & Kastenholz Standards Track [Page 14]
RFC 2863 The Interfaces Group MIB June 2000
Instead, this memo adopts expanded, 64 bit, counters. These counters
are provided in new "high capacity" groups. The old, 32-bit,
counters have not been deprecated. The 64-bit counters are to be
used only when the 32-bit counters do not provide enough capacity;
that is, when the 32 bit counters could wrap too fast.
For interfaces that operate at 20,000,000 (20 million) bits per
second or less, 32-bit byte and packet counters MUST be supported.
For interfaces that operate faster than 20,000,000 bits/second, and
slower than 650,000,000 bits/second, 32-bit packet counters MUST be
supported and 64-bit octet counters MUST be supported. For
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -