📄 rfc2863.txt
字号:
Network Working Group K. McCloghrie
Request for Comments: 2863 Cisco Systems
Obsoletes: 2233 F. Kastenholz
Category: Standards Track Argon Networks
June 2000
The Interfaces Group MIB
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Table of Contents
1 Introduction ................................................. 2
2 The SNMP Network Management Framework ........................ 2
3 Experience with the Interfaces Group ......................... 3
3.1 Clarifications/Revisions ................................... 4
3.1.1 Interface Sub-Layers ..................................... 4
3.1.2 Guidance on Defining Sub-layers .......................... 7
3.1.3 Virtual Circuits ......................................... 8
3.1.4 Bit, Character, and Fixed-Length Interfaces .............. 8
3.1.5 Interface Numbering ...................................... 10
3.1.6 Counter Size ............................................. 14
3.1.7 Interface Speed .......................................... 16
3.1.8 Multicast/Broadcast Counters ............................. 17
3.1.9 Trap Enable .............................................. 17
3.1.10 Addition of New ifType values ........................... 18
3.1.11 InterfaceIndex Textual Convention ....................... 18
3.1.12 New states for IfOperStatus ............................. 18
3.1.13 IfAdminStatus and IfOperStatus .......................... 19
3.1.14 IfOperStatus in an Interface Stack ...................... 21
3.1.15 Traps ................................................... 21
3.1.16 ifSpecific .............................................. 23
3.1.17 Creation/Deletion of Interfaces ......................... 23
3.1.18 All Values Must be Known ................................ 24
4 Media-Specific MIB Applicability ............................. 24
5 Overview ..................................................... 25
6 Interfaces Group Definitions ................................. 26
McCloghrie & Kastenholz Standards Track [Page 1]
RFC 2863 The Interfaces Group MIB June 2000
7 Acknowledgements ............................................. 64
8 References ................................................... 64
9 Security Considerations ...................................... 66
10 Authors' Addresses .......................................... 67
11 Changes from RFC 2233 ....................................... 67
12 Notice on Intellectual Property ............................. 68
13 Full Copyright Statement .................................... 69
1. Introduction
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes managed objects used for managing Network
Interfaces. This memo discusses the 'interfaces' group of MIB-II
[17], especially the experience gained from the definition of
numerous media-specific MIB modules for use in conjunction with the '
interfaces' group for managing various sub-layers beneath the
internetwork-layer. It specifies clarifications to, and extensions
of, the architectural issues within the MIB-II model of the '
interfaces' group. This memo obsoletes RFC 2233, the previous
version of the Interfaces Group MIB.
The key words "MUST" and "MUST NOT" in this document are to be
interpreted as described in RFC 2119 [16].
2. The SNMP Network Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2571 [1].
o Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in
STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4].
The second version, called SMIv2, is described in STD 58, which
consists of RFC 2578 [5], RFC 2579 [6] and RFC 2580 [7].
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [8]. A second version of the
SNMP message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [9] and
RFC 1906 [10]. The third version of the message protocol is
called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and
RFC 2574 [12].
McCloghrie & Kastenholz Standards Track [Page 2]
RFC 2863 The Interfaces Group MIB June 2000
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
o A set of fundamental applications described in RFC 2573 [14]
and the view-based access control mechanism described in RFC
2575 [15].
A more detailed introduction to the current SNMP Management Framework
can be found in RFC 2570 [22].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (e.g., use of Counter64). Some machine
readable information in SMIv2 will be converted into textual
descriptions in SMIv1 during the translation process. However, this
loss of machine readable information is not considered to change the
semantics of the MIB.
3. Experience with the Interfaces Group
One of the strengths of internetwork-layer protocols such as IP [18]
is that they are designed to run over any network interface. In
achieving this, IP considers any and all protocols it runs over as a
single "network interface" layer. A similar view is taken by other
internetwork-layer protocols. This concept is represented in MIB-II
by the 'interfaces' group which defines a generic set of managed
objects such that any network interface can be managed in an
interface-independent manner through these managed objects. The '
interfaces' group provides the means for additional managed objects
specific to particular types of network interface (e.g., a specific
medium such as Ethernet) to be defined as extensions to the '
interfaces' group for media-specific management. Since the
standardization of MIB-II, many such media-specific MIB modules have
been defined.
Experience in defining these media-specific MIB modules has shown
that the model defined by MIB-II is too simplistic and/or static for
some types of media-specific management. As a result, some of these
media-specific MIB modules assume an evolution or loosening of the
McCloghrie & Kastenholz Standards Track [Page 3]
RFC 2863 The Interfaces Group MIB June 2000
model. This memo documents and standardizes that evolution of the
model and fills in the gaps caused by that evolution. This memo also
incorporates the interfaces group extensions documented in RFC 1229
[19].
3.1. Clarifications/Revisions
There are several areas for which experience has indicated that
clarification, revision, or extension of the model would be helpful.
The following sections discuss the changes in the interfaces group
adopted by this memo in each of these areas.
In some sections, one or more paragraphs contain discussion of
rejected alternatives to the model adopted in this memo. Readers not
familiar with the MIB-II model and not interested in the rationale
behind the new model may want to skip these paragraphs.
3.1.1. Interface Sub-Layers
Experience in defining media-specific management information has
shown the need to distinguish between the multiple sub-layers beneath
the internetwork-layer. In addition, there is a need to manage these
sub-layers in devices (e.g., MAC-layer bridges) which are unaware of
which, if any, internetwork protocols run over these sub-layers. As
such, a model of having a single conceptual row in the interfaces
table (MIB-II's ifTable) represent a whole interface underneath the
internetwork-layer, and having a single associated media-specific MIB
module (referenced via the ifType object) is too simplistic. A
further problem arises with the value of the ifType object which has
enumerated values for each type of interface.
Consider, for example, an interface with PPP running over an HDLC
link which uses a RS232-like connector. Each of these sub-layers has
its own media-specific MIB module. If all of this is represented by
a single conceptual row in the ifTable, then an enumerated value for
ifType is needed for that specific combination which maps to the
specific combination of media-specific MIBs. Furthermore, such a
model still lacks a method to describe the relationship of all the
sub-layers of the MIB stack.
An associated problem is that of upward and downward multiplexing of
the sub-layers. An example of upward multiplexing is MLP (Multi-
Link-Procedure) which provides load-sharing over several serial lines
by appearing as a single point-to-point link to the sub-layer(s)
above. An example of downward multiplexing would be several
instances of PPP, each framed within a separate X.25 virtual circuit,
McCloghrie & Kastenholz Standards Track [Page 4]
RFC 2863 The Interfaces Group MIB June 2000
all of which run over one fractional T1 channel, concurrently with
other uses of the T1 link. The MIB structure must allow these sorts
of relationships to be described.
Several solutions for representing multiple sub-layers were rejected.
One was to retain the concept of one conceptual row for all the sub-
layers of an interface and have each media-specific MIB module
identify its "superior" and "subordinate" sub-layers through OBJECT
IDENTIFIER "pointers". This scheme would have several drawbacks: the
superior/subordinate pointers would be contained in the media-
specific MIB modules; thus, a manager could not learn the structure
of an interface without inspecting multiple pointers in different MIB
modules; this would be overly complex and only possible if the
manager had knowledge of all the relevant media-specific MIB modules;
MIB modules would all need to be retrofitted with these new
"pointers"; this scheme would not adequately address the problem of
upward and downward multiplexing; and finally, enumerated values of
ifType would be needed for each combination of sub-layers. Another
rejected solution also retained the concept of one conceptual row for
all the sub-layers of an interface but had a new separate MIB table
to identify the "superior" and "subordinate" sub-layers and to
contain OBJECT IDENTIFIER "pointers" to the media-specific MIB module
for each sub-layer. Effectively, one conceptual row in the ifTable
would represent each combination of sub-layers between the
internetwork-layer and the wire. While this scheme has fewer
drawbacks, it still would not support downward multiplexing, such as
PPP over MLP: observe that MLP makes two (or more) serial lines
appear to the layers above as a single physical interface, and thus
PPP over MLP should appear to the internetwork-layer as a single
interface; in contrast, this scheme would result in two (or more)
conceptual rows in the ifTable, both of which the internetwork-layer
would run over. This scheme would also require enumerated values of
ifType for each combination of sub-layers.
The solution adopted by this memo is to have an individual conceptual
row in the ifTable to represent each sub-layer, and have a new
separate MIB table (the ifStackTable, see section 6 below) to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -