📄 rfc2374.txt
字号:
Network Working Group R. Hinden
Request for Comments: 2374 Nokia
Obsoletes: 2073 M. O'Dell
Category: Standards Track UUNET
S. Deering
Cisco
July 1998
An IPv6 Aggregatable Global Unicast Address Format
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
1.0 Introduction
This document defines an IPv6 aggregatable global unicast address
format for use in the Internet. The address format defined in this
document is consistent with the IPv6 Protocol [IPV6] and the "IPv6
Addressing Architecture" [ARCH]. It is designed to facilitate
scalable Internet routing.
This documented replaces RFC 2073, "An IPv6 Provider-Based Unicast
Address Format". RFC 2073 will become historic. The Aggregatable
Global Unicast Address Format is an improvement over RFC 2073 in a
number of areas. The major changes include removal of the registry
bits because they are not needed for route aggregation, support of
EUI-64 based interface identifiers, support of provider and exchange
based aggregation, separation of public and site topology, and new
aggregation based terminology.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC 2119].
Hinden, et. al. Standards Track [Page 1]
RFC 2374 IPv6 Global Unicast Address Format July 1998
2.0 Overview of the IPv6 Address
IPv6 addresses are 128-bit identifiers for interfaces and sets of
interfaces. There are three types of addresses: Unicast, Anycast,
and Multicast. This document defines a specific type of Unicast
address.
In this document, fields in addresses are given specific names, for
example "subnet". When this name is used with the term "ID" (for
"identifier") after the name (e.g., "subnet ID"), it refers to the
contents of the named field. When it is used with the term "prefix"
(e.g. "subnet prefix") it refers to all of the addressing bits to
the left of and including this field.
IPv6 unicast addresses are designed assuming that the Internet
routing system makes forwarding decisions based on a "longest prefix
match" algorithm on arbitrary bit boundaries and does not have any
knowledge of the internal structure of IPv6 addresses. The structure
in IPv6 addresses is for assignment and allocation. The only
exception to this is the distinction made between unicast and
multicast addresses.
The specific type of an IPv6 address is indicated by the leading bits
in the address. The variable-length field comprising these leading
bits is called the Format Prefix (FP).
This document defines an address format for the 001 (binary) Format
Prefix for Aggregatable Global Unicast addresses. The same address
format could be used for other Format Prefixes, as long as these
Format Prefixes also identify IPv6 unicast addresses. Only the "001"
Format Prefix is defined here.
3.0 IPv6 Aggregatable Global Unicast Address Format
This document defines an address format for the IPv6 aggregatable
global unicast address assignment. The authors believe that this
address format will be widely used for IPv6 nodes connected to the
Internet. This address format is designed to support both the
current provider-based aggregation and a new type of exchange-based
aggregation. The combination will allow efficient routing
aggregation for sites that connect directly to providers and for
sites that connect to exchanges. Sites will have the choice to
connect to either type of aggregation entity.
Hinden, et. al. Standards Track [Page 2]
RFC 2374 IPv6 Global Unicast Address Format July 1998
While this address format is designed to support exchange-based
aggregation (in addition to current provider-based aggregation) it is
not dependent on exchanges for it's overall route aggregation
properties. It will provide efficient route aggregation with only
provider-based aggregation.
Aggregatable addresses are organized into a three level hierarchy:
- Public Topology
- Site Topology
- Interface Identifier
Public topology is the collection of providers and exchanges who
provide public Internet transit services. Site topology is local to
a specific site or organization which does not provide public transit
service to nodes outside of the site. Interface identifiers identify
interfaces on links.
______________ ______________
--+/ \+--------------+/ \+----------
( P1 ) +----+ ( P3 ) +----+
+\______________/ | |----+\______________/+--| |--
| +--| X1 | +| X2 |
| ______________ / | |-+ ______________ / | |--
+/ \+ +-+--+ \ / \+ +----+
( P2 ) / \ +( P4 )
--+\______________/ / \ \______________/
| / \ | |
| / | | |
| / | | |
_|_ _/_ _|_ _|_ _|_
/ \ / \ / \ / \ / \
( S.A ) ( S.B ) ( P5 ) ( P6 )( S.C )
\___/ \___/ \___/ \___/ \___/
| / \
_|_ _/_ \ ___
/ \ / \ +-/ \
( S.D ) ( S.E ) ( S.F )
\___/ \___/ \___/
As shown in the figure above, the aggregatable address format is
designed to support long-haul providers (shown as P1, P2, P3, and
P4), exchanges (shown as X1 and X2), multiple levels of providers
(shown at P5 and P6), and subscribers (shown as S.x) Exchanges
(unlike current NAPs, FIXes, etc.) will allocate IPv6 addresses.
Organizations who connect to these exchanges will also subscribe
(directly, indirectly via the exchange, etc.) for long-haul service
from one or more long-haul providers. Doing so, they will achieve
Hinden, et. al. Standards Track [Page 3]
RFC 2374 IPv6 Global Unicast Address Format July 1998
addressing independence from long-haul transit providers. They will
be able to change long-haul providers without having to renumber
their organization. They can also be multihomed via the exchange to
more than one long-haul provider without having to have address
prefixes from each long-haul provider. Note that the mechanisms used
for this type of provider selection and portability are not discussed
in the document.
3.1 Aggregatable Global Unicast Address Structure
The aggregatable global unicast address format is as follows:
| 3| 13 | 8 | 24 | 16 | 64 bits |
+--+-----+---+--------+--------+--------------------------------+
|FP| TLA |RES| NLA | SLA | Interface ID |
| | ID | | ID | ID | |
+--+-----+---+--------+--------+--------------------------------+
<--Public Topology---> Site
<-------->
Topology
<------Interface Identifier----->
Where
FP Format Prefix (001)
TLA ID Top-Level Aggregation Identifier
RES Reserved for future use
NLA ID Next-Level Aggregation Identifier
SLA ID Site-Level Aggregation Identifier
INTERFACE ID Interface Identifier
The following sections specify each part of the IPv6 Aggregatable
Global Unicast address format.
3.2 Top-Level Aggregation ID
Top-Level Aggregation Identifiers (TLA ID) are the top level in the
routing hierarchy. Default-free routers must have a routing table
entry for every active TLA ID and will probably have additional
entries providing routing information for the TLA ID in which they
are located. They may have additional entries in order to optimize
routing for their specific topology, but the routing topology at all
levels must be designed to minimize the number of additional entries
fed into the default free routing tables.
Hinden, et. al. Standards Track [Page 4]
RFC 2374 IPv6 Global Unicast Address Format July 1998
This addressing format supports 8,192 (2^13) TLA ID's. Additional
TLA ID's may be added by either growing the TLA field to the right
into the reserved field or by using this format for additional format
prefixes.
The issues relating to TLA ID assignment are beyond the scope of this
document. They will be described in a document under preparation.
3.3 Reserved
The Reserved field is reserved for future use and must be set to
zero.
The Reserved field allows for future growth of the TLA and NLA fields
as appropriate. See section 4.0 for a discussion.
3.4 Next-Level Aggregation Identifier
Next-Level Aggregation Identifier's are used by organizations
assigned a TLA ID to create an addressing hierarchy and to identify
sites. The organization can assign the top part of the NLA ID in a
manner to create an addressing hierarchy appropriate to its network.
It can use the remainder of the bits in the field to identify sites
it wishes to serve. This is shown as follows:
| n | 24-n bits | 16 | 64 bits |
+-----+--------------------+--------+-----------------+
|NLA1 | Site ID | SLA ID | Interface ID |
+-----+--------------------+--------+-----------------+
Each organization assigned a TLA ID receives 24 bits of NLA ID space.
This NLA ID space allows each organization to provide service to
approximately as many organizations as the current IPv4 Internet can
support total networks.
Organizations assigned TLA ID's may also support NLA ID's in their
own Site ID space. This allows the organization assigned a TLA ID to
provide service to organizations providing public transit service and
to organizations who do not provide public transit service. These
organizations receiving an NLA ID may also choose to use their Site
ID space to support other NLA ID's. This is shown as follows:
Hinden, et. al. Standards Track [Page 5]
RFC 2374 IPv6 Global Unicast Address Format July 1998
| n | 24-n bits | 16 | 64 bits |
+-----+--------------------+--------+-----------------+
|NLA1 | Site ID | SLA ID | Interface ID |
+-----+--------------------+--------+-----------------+
| m | 24-n-m | 16 | 64 bits |
+-----+--------------+--------+-----------------+
|NLA2 | Site ID | SLA ID | Interface ID |
+-----+--------------+--------+-----------------+
| o |24-n-m-o| 16 | 64 bits |
+-----+--------+--------+-----------------+
|NLA3 | Site ID| SLA ID | Interface ID |
+-----+--------+--------+-----------------+
The design of the bit layout of the NLA ID space for a specific TLA
ID is left to the organization responsible for that TLA ID. Likewise
the design of the bit layout of the next level NLA ID is the
responsibility of the previous level NLA ID. It is recommended that
organizations assigning NLA address space use "slow start" allocation
procedures similar to [RFC2050].
The design of an NLA ID allocation plan is a tradeoff between routing
aggregation efficiency and flexibility. Creating hierarchies allows
for greater amount of aggregation and results in smaller routing
tables. Flat NLA ID assignment provides for easier allocation and
attachment flexibility, but results in larger routing tables.
3.5 Site-Level Aggregation Identifier
The SLA ID field is used by an individual organization to create its
own local addressing hierarchy and to identify subnets. This is
analogous to subnets in IPv4 except that each organization has a much
greater number of subnets. The 16 bit SLA ID field support 65,535
individual subnets.
Organizations may choose to either route their SLA ID "flat" (e.g.,
not create any logical relationship between the SLA identifiers that
results in larger routing tables), or to create a two or more level
hierarchy (that results in smaller routing tables) in the SLA ID
field. The latter is shown as follows:
Hinden, et. al. Standards Track [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -