📄 rfc2561.txt
字号:
White & Moore Standards Track [Page 6]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
and tn3270eSrvrConfPortAddress allow this restriction to be
represented in the MIB. A TN3270E server that doesn't restrict
connections over a port to a local IP Address SHALL use the value
unknown(0) for tn3270eSrvrConfPortAddrType, and a zero-length octet
string for tn3270eSrvrConfPortAddress.
3.1.3 tn3270eSrvrStatsTable
The tn3270eSrvrStatsTable defines a series of objects that provide
general usage statistics for a TN3270E server. An entry can
represent the total activity for a server, or it can represent the
activity occurring at the server on either a port or a port-and-
local-address basis.
An implementation of this table MUST use only one of the three levels
of refinement that the indexing of this table supports for the
entries associated with a single TN3270E server.
The objects in this table reporting maximum, in-use, and spare LUs
for terminals and printers presuppose an implementation where
terminal resources and printer resources come from disjoint,
dedicated pools. An implementation where resources for the two types
of LUs come from a single shared pool should return the following
values:
o maximum: maximum size of the shared pool
o in-use: number currently in use as this type of LU
o spare: maximum - (terminal in-use + printer in-use)
3.2 TN3270E Server Resource Configuration
The following three tables provide for configuration of resources at
a TN3270E server:
o tn3270eClientGroupTable
o tn3270eResPoolTable
o tn3270eClientResMapTable
tn3270eClientGroupTable and tn3270eResPoolTable enable
implementations to define groupings of both client addresses and
resource pools for mapping client addresses to resources. The
tn3270eClientResMapTable provides a mapping from a client group to a
resource pool.
White & Moore Standards Track [Page 7]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
3.3 Resource Name / Client Address Mappings
The TN3270E-MIB contains three tables for mapping resource names to
client addresses, and client addresses to resource names:
o tn3270eSnaMapTable
o tn3270eResMapTable
o tn3270eTcpConnTable
3.3.1 tn3270eSnaMapTable
The tn3270eSnaMapTable is a read-only table that maps a secondary
LU's SNA network name to the name by which it is known locally at the
TN3270E server. For correlation with data from the SNA network, the
name of the associated primary LU also appears in a
tn3270eSnaMapEntry. An entry in this table is created when the
Activate LU (ACTLU) request carrying the SNA network name of the SLU
is received from the SSCP. The entry is deleted when the SLU is
deactivated.
A TN3270E server provides a client with access to an SNA application
by associating a TCP connection from the client with an SNA secondary
LU (SLU) at the server. This SLU in turn has an SNA session with a
primary LU (PLU) running on an SNA host. This PLU represents the
application with which the client is communicating. The TN3270E-MIB
includes two tables for mapping back and forth among the SNA name
identifying the PLU, the SNA name identifying the SLU, and the TCP
connection with the client.
In order to understand how these name mappings work, it is necessary
to understand a subtlety involving the names of the SLUs at the
TN3270E server: these names are often different from the names by
which the SLUs are known in the rest of the SNA network. In the
TN3270E-MIB, these two types of SLU names are termed "local names"
and "SSCP-supplied names"; the latter term indicates that the name by
which the SLU is known in the SNA network comes to the TN3270E server
from the SNA System Services Control Point.
SSCPs don't always send SLU names down to secondary LUs; in some
cases this capability must be turned on. In the case of SLUs served
by a Dependent LU Requester (DLUR), an SSCP always sends SLU names to
the DLUR. It is necessary, however, to enable the DLUR's PU/LU
Network Name Forwarding function, so that it forwards the SLU names
it receives from the SSCP down to the PUs that it serves.
White & Moore Standards Track [Page 8]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
For SLUs associated with an SNA type 2.0 node (or with a boundary-
function-attached type 2.1 node) not served by a DLUR, inclusion of
SLU names on ACTLU must be enabled explicitly at the SSCP via local
configuration.
3.3.2 tn3270eResMapTable
The tn3270eResMapTable is a read-only table that maps a resource name
to a client's address. An entry in this table is created when a TCP
connection is received by a TN3270E server and mapped to a resource.
The entry is deleted when the resource-to-address association is no
longer valid.
3.3.3 tn3270eTcpConnTable
The TCP Connection Table is currently defined by RFC 2012 (Refer to
reference [20], TCP-MIB Definitions). It contains the following
objects:
o tcpConnState (INTEGER)
o tcpConnLocalAddress (IpAddress)
o tcpConnLocalPort (INTEGER)
o tcpConnRemAddress (IpAddress)
o tcpConnRemPort (INTEGER)
It is indexed by: tcpConnLocalAddress, tcpConnLocalPort,
tcpConnRemAddress, and tcpConnRemPort.
The tn3270eTcpConnTable contains objects for keeping a list of the
current set of TN3270 and TN3270E sessions at a TN3270E server. The
relationship between the tcpConnTable and the Tn3270eTcpConnTable is
not one-to-one, since the tn3270eTcpConnTable contains information
pertaining only to TN3270(E) sessions.
The tn3270eTcpConnTable has a different indexing structure from that
of the tcpConnTable. Instead of using IpAddress objects,
Tn3270eAddress and IANATn3270eAddrType object pairs are used to
specify client addresses (both local and remote). This enables
support of IPv6 addresses. In addition, the remote address pair
precedes the local address pair in the index clause, in order to
enable a GET-NEXT operation using only the remote address pair.
3.4 Advisory Spin Lock Usage
Within the TN3270E-MIB, tn3270eConfSpinLock is defined as an advisory
lock that allows cooperating TN3270E-MIB applications to coordinate
their use of the tn3270eSrvrConfTable, the tn3270eSrvrPortTable, the
tn3270eClientGroupTable, the tn3270eResPoolTable, and the
White & Moore Standards Track [Page 9]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
tn3270eClientResMapTable. When creating a new entry or altering an
existing entry in any of these tables, an application SHOULD make use
of tn3270eConfSpinLock to serialize application changes or additions.
Since this is an advisory lock, its use by management applications
SHALL NOT be enforced by agents. Agents MUST, however, implement the
tn3270eConfSpinLock object.
3.5 Row Persistence
The following tables enable remote creation of their entries by
including RowStatus objects:
o tn3270eSrvrConfTable
o tn3270eSrvrPortTable
o tn3270eClientGroupTable
o tn3270eResPoolTable
o tn3270eClientResMapTable
An implementation SHOULD NOT retain SNMP-created entries in these
tables across reIPLs (Initial Program Loads) of the corresponding
TN3270E server, since management applications need to see consistent
behavior with respect to the persistence of the table entries that
they create.
It is expected that local, implementation-dependent configuration
information will be used to define the initial and persistent
configurations for TN3270E server usage. Thus it is not necessary to
enable persistence of table entries by adding StorageType (refer to
RFC 1903 [6]) objects to these tables.
3.6 IANA Considerations
The tn3270eSrvrFunctionsSupported, tn3270eTcpConnFunctions,
tn3270eTcpConnClientIdFormat, and tn3270eTcpConnLogInfo objects, as
well as a number of objects identifying various address types,
resource types, and device types, use textual conventions imported
from the IANATn3270eTC-MIB. The purpose of defining these textual
conventions in a separate MIB module is to allow additional values to
be defined without having to issue a new version of this document.
The Internet Assigned Numbers Authority (IANA) is responsible for the
assignment of all Internet numbers, including various SNMP-related
numbers; it will administer the values associated with these textual
conventions.
The rules for additions or changes to the IANATn3270eTC-MIB are
outlined in the DESCRIPTION clause associated with its MODULE-
IDENTITY statement.
White & Moore Standards Track [Page 10]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
The current version of the IANATn3270eTC-MIB can be accessed from the
IANA home page at: "http://www.iana.org/".
4.0 Definitions
TN3270E-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Unsigned32, TimeTicks,
IpAddress, Counter32, Gauge32, Counter64
FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus, TestAndIncr, DateAndTime,
TimeStamp
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP
FROM SNMPv2-CONF
snanauMIB
FROM SNA-NAU-MIB
Utf8String
FROM SYSAPPL-MIB
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
IANATn3270eAddrType, IANATn3270eAddress,
IANATn3270eClientType, IANATn3270Functions,
IANATn3270ResourceType, IANATn3270DeviceType,
IANATn3270eLogData
FROM IANATn3270eTC-MIB;
tn3270eMIB MODULE-IDENTITY
LAST-UPDATED "9807270000Z" -- July 27, 1998
ORGANIZATION "TN3270E Working Group"
CONTACT-INFO
"Kenneth White (kennethw@vnet.ibm.com)
IBM Corp. - Dept. BRQA/Bldg. 501/G114
P.O. Box 12195
3039 Cornwallis
RTP, NC 27709-2195
USA
Robert Moore (remoore@us.ibm.com)
IBM Corp. - Dept. BRQA/Bldg. 501/G114
P.O. Box 12195
3039 Cornwallis
RTP, NC 27709-2195
USA
+1-919-254-4436"
DESCRIPTION
"This module defines a portion of the management
White & Moore Standards Track [Page 11]
RFC 2561 TN3270E Using SMIv2 MIB April 1999
information base (MIB) for managing TN3270E servers."
REVISION "9807270000Z" -- July 27, 1998
DESCRIPTION
"RFC nnnn (Proposed Standard)" -- RFC Editor to fill in
::= { snanauMIB 8 }
-- Textual Conventions
SnaResourceName ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The textual convention for defining an SNA resource
name. A fully qualified SNA resource name, consisting
of a 1 to 8 character network identifier (NetId), a
period ('.'), and a 1 to 8 character resource name
(ResName).
The NetId and ResName are constructed from the
uppercase letters 'A' - 'Z' and the numerics '0' - '9',
all encoded in ASCII, with the restriction that the
first character of each must be a letter. Blanks are
not allowed.
Earlier versions of SNA permitted three additional
characters in NetIds and ResNames: '#', '@', and '$'.
While this use of these characters has been retired,
a Management Station should still accept them for
backward compatibility.
Note: This Textual Convention is not subject to
internationalization, and does not use the character
encodings used by the Utf8String Textual Convention."
SYNTAX OCTET STRING (SIZE(0..17))
Tn3270eTraceData ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An octet string representing trace data from the
Telnet half of a TN3270E session, from the SNA half,
or from both. The octet string contains a sequence
of trace elements, with the trace elements in the
string ordered from earliest to latest.
Each trace element has the following form:
+---+---+----+----------------------+
!length !type!data !
+---+---+----+----------------------+
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -