📄 rfc1520.txt
字号:
requests. In other words, the aggregation shall be done by the CIDR-
capable provider (the receiver) and only when agreed to by the CIDR-
incapable provider (the sender).
Passing inter-domain routing information from a CIDR-capable provider
to a CIDR-incapable Type 2 provider will require an agreement between
the two that would cover the following items:
- under what conditions the CIDR-capable provider can pass an
inter-domain Default route to the CIDR-incapable provider
- exchange of specific non-CIDR reachability information
- controlled de-aggregation of CIDR reachability information
Agreements that cover the first two items are already implemented
within the Internet. Thus, the only additional factor introduced by
CIDR is controlled de-aggregation. A CIDR-capable provider may decide
not to de-aggregate any CIDR reachability information, or to de-
aggregate some or all of the CIDR reachability information.
If a CIDR-capable provider does not de-aggregate CIDR reachability
information, then its non-CIDR Type 2 peer can obtain reachability
information from it either as non-CIDR reachability information
Rekhter & Topolcic [Page 5]
RFC 1520 CIDR Provider Information Exchange September 1993
(explicit Class A/B/C network advertisement) or as an inter-domain
Default route. Since most of the current reachability information in
the Internet is non-CIDR, a Type 2 provider would be able to acquire
this information as explicit Class A/B/C network advertisements from
the CIDR-capable provider, as it does now. Further, it is expected
that at least on a temporary basis (until the completion of the
second phase of the transition) in a majority of cases, Type 2
providers should be able to use an inter-domain Default route
(acquired from the CIDR-capable provider) as a way of dealing with
forwarding to destinations covered by CIDR reachability information.
Thus, it is expected that most of the cases involving a CIDR-capable
Type 2 provider and a CIDR-capable provider that does not perform
de-aggregation could be addressed by a combination of exchanging
specific non-CIDR reachability information and an inter-domain
Default route. Any inconvenience to a CIDR-incapable provider due to
the use of an inter-domain Default route will be removed once the
provider transitions to CIDR.
On the other hand, a CIDR-capable provider may decide to perform
controlled de-aggregation of CIDR reachability information.
Additional information on performing controlled de-aggregation can be
found in [5] (Section 8). Special care must be taken when de-
aggregating CIDR reachability information carried by a route with the
ATOMIC_AGGREGATE path attribute. It is worth while pointing out that
due to the nature of Type 2 provider (it needs to acquire a large
percentage of total inter-domain routing information) it is expected
that the controlled de-aggregation would result in substantial
configuration at the border router that performs the de-aggregation.
5.2 Exchanging Inter-Domain Routing Information between CIDR-capable
providers and CIDR-incapable Type 3 (Default with few explicit
routes) providers
In this case, as in the case described in Section 5.1, it is expected
that a border router in a CIDR-capable provider would be able to
aggregate routing information it receives from a CIDR-incapable Type
3 provider. The aggregation is expected to be governed and controlled
via a bilateral agreement. Specifically, the CIDR capable provider
is expected to aggregate only the information the CIDR-incapable
provider requests.
The only difference between this case and the case described in
Section 5.1 is the fact that a CIDR-incapable provider requires just
a small percentage of total inter-domain routing information. If this
information falls into a non-CIDR category, then a Type 3 provider
would be able to acquire it from a CIDR-capable provider. If this is
CIDR reachability information, then in a majority of cases it is
Rekhter & Topolcic [Page 6]
RFC 1520 CIDR Provider Information Exchange September 1993
expected that forwarding to destinations covered by this information
could be handled via an inter-domain Default route.
It is still expected that a border router in a CIDR-capable provider
would be able to aggregate routing information it receives from a
CIDR-incapable Type 3 provider. The aggregation is expected to be
governed and controlled via a bilateral agreement. Specifically, the
CIDR capable provider is expected to aggregate only the information
the other side (the CIDR-incapable provider) requests.
5.3 Exchanging Inter-Domain Routing Information between CIDR-capable
providers and CIDR-incapable Type 4 (Default only) providers
Again, it is still expected that a border router in a CIDR-capable
provider would be able to aggregate routing information it receives
from a CIDR-incapable Type 4 provider. The aggregation is expected to
be governed and controlled via a bilateral agreement. Specifically,
the CIDR capable provider is expected to aggregate only the
information the CIDR-incapable provider requests.
The only difference between this case and the case described in
Section 5.1 is the fact that CIDR-incapable provider would not
require any inter-domain routing information, other than the Default
inter-domain route. Therefore, controlled de-aggregation of CIDR
reachability information is not an issue.
6. Conclusions
It is expected that the reduction in the global volume of routing
information will begin immediately upon completion of the first phase
of the transition to CIDR. The second phase will allow simpler
bilateral arrangements between connected service providers by
shifting the responsibility for routing information aggregation
towards the parties that are better suitable for it, and by
significantly reducing the need for routing information de-
aggregation. Thus, most of the gain achieved during the second phase
will come from simplifying bilateral agreements. The third phase it
intended to complete the goals and objectives of the second phase.
7. Acknowledgments
This document was largely stimulated by the discussion that took
place during the Merit/NSFNET Regional Tech Meeting in Boulder,
January 21-22, 1993. We would like specifically acknowledge
contributions by Peter Ford (Los Alamos National Laboratory), Elise
Gerich (NSFNET/Merit), Susan Hares (NSFNET/Merit), Mark Knopper
(NSFNET/Merit), Bill Manning (Sesquinet/Rice University), and John
Scudder (NSFNET/Merit).
Rekhter & Topolcic [Page 7]
RFC 1520 CIDR Provider Information Exchange September 1993
8. References
[1] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Classless Inter-
Domain Routing (CIDR): An Address Assignment and Aggregation
Strategy", RFC 1519, BARRNet, cisco, Merit, and OARnet, September
1993.
[2] Gerich, E., "Guidelines for Management of IP Address Space", RFC
1466, Merit, May 1993.
[3] Rekhter, Y., and T. Li, "An Architecture for IP Address
Allocation with CIDR", RFC 1518, T.J. Watson Research Center, IBM
Corp., cisco Systems, September 1993.
[4] Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4)",
Work in Progress, June 1993.
[5] Rekhter, Y., and P. Gross, "Application of the Border Gateway
Protocol in the Internet", Work in Progress, September 1992.
[6] Hares, S., "IDRP for IP", Work in Progress, March 1993.
[7] Varadhan, K., "BGP4 OSPF Interaction", Work in Progress, March
1993.
[8] Topolcic, C., "Notes on BGP-4/CIDR Coordination Meeting of 11
March 93", Informal Notes, March 1993.
[9] Knopper, M., "Aggregation Support in the NSFNET Policy Routing
Database", RFC 1482, Merit, June 1993.
9. Security Considerations
Security issues are not discussed in this memo.
Rekhter & Topolcic [Page 8]
RFC 1520 CIDR Provider Information Exchange September 1993
10. Authors' Addresses
Yakov Rekhter
T.J. Watson Research Center, IBM Corporation
P.O. Box 218
Yorktown Heights, NY 10598
Phone: (914) 945-3896
EMail: yakov@watson.ibm.com
Claudio Topolcic
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Suite 100
Reston, VA 22091
Phone: (703) 620-8990
EMail: topolcic@CNRI.Reston.VA.US
Rekhter & Topolcic [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -