📄 rfc2382.txt
字号:
multicast and unicast routing. Unicast routing over ATM has been
addressed [10] and [11]. MARS [5] provides multicast address
resolution for IP over ATM networks, an important part of the
solution for multicast but still relies on multicast routing
protocols to connect multicast senders and receivers on different
subnets.
2.3 Aggregation of Flows
Some of the scaling issues noted in previous sections can be
addressed by aggregating several RSVP flows over a single VC if the
destinations of the VC match for all the flows being aggregated.
However, this causes considerable complexity in the management of VCs
and in the scheduling of packets within each VC at the root point of
Crawley, et. al. Informational [Page 10]
RFC 2382 Integrated Services and RSVP over ATM August 1998
the VC. Note that the rescheduling of flows within a VC is not
possible in the switches in the core of the ATM network. Virtual
Paths (VPs) can be used for aggregating multiple VCs. This topic is
discussed in greater detail as it applies to multicast data
distribution in section 4.2.3.4
2.4 Mapping QoS Parameters
The mapping of QoS parameters from the IntServ models to the ATM
service classes is an important issue in making RSVP and IntServ work
over ATM. [14] addresses these issues very completely for the
Controlled Load and Guaranteed Service models. An additional issue
is that while some guidelines can be developed for mapping the
parameters of a given service model to the traffic descriptors of an
ATM traffic class, implementation variables, policy, and cost factors
can make strict mapping problematic. So, a set of workable mappings
that can be applied to different network requirements and scenarios
is needed as long as the mappings can satisfy the needs of the
service model(s).
2.5 Directly Connected ATM Hosts
It is obvious that the needs of hosts that are directly connected to
ATM networks must be considered for RSVP and IntServ over ATM.
Functionality for RSVP over ATM must not assume that an ATM host has
all the functionality of a router, but such things as MARS and NHRP
clients would be worthwhile features. A host must manage VCs just
like any other ATM sender or receiver as described later in section
4.
2.6 Accounting and Policy Issues
Since RSVP and IntServ create classes of preferential service, some
form of administrative control and/or cost allocation is needed to
control access. There are certain types of policies specific to ATM
and IP over ATM that need to be studied to determine how they
interoperate with the IP and IntServ policies being developed.
Typical IP policies would be that only certain users are allowed to
make reservations. This policy would translate well to IP over ATM
due to the similarity to the mechanisms used for Call Admission
Control (CAC).
There may be a need for policies specific to IP over ATM. For
example, since signalling costs in ATM are high relative to IP, an IP
over ATM specific policy might restrict the ability to change the
prevailing QoS in a VC. If VCs are relatively scarce, there also
might be specific accounting costs in creating a new VC. The work so
far has been preliminary, and much work remains to be done. The
Crawley, et. al. Informational [Page 11]
RFC 2382 Integrated Services and RSVP over ATM August 1998
policy mechanisms outlined in [12] and [13] provide the basic
mechanisms for implementing policies for RSVP and IntServ over any
media, not just ATM.
3. Framework for IntServ and RSVP over ATM
Now that we have defined some of the issues for IntServ and RSVP over
ATM, we can formulate a framework for solutions. The problem breaks
down to two very distinct areas; the mapping of IntServ models to ATM
service categories and QoS parameters and the operation of RSVP over
ATM.
Mapping IntServ models to ATM service categories and QoS parameters
is a matter of determining which categories can support the goals of
the service models and matching up the parameters and variables
between the IntServ description and the ATM description(s). Since
ATM has such a wide variety of service categories and parameters,
more than one ATM service category should be able to support each of
the two IntServ models. This will provide a good bit of flexibility
in configuration and deployment. [14] examines this topic
completely.
The operation of RSVP over ATM requires careful management of VCs in
order to match the dynamics of the RSVP protocol. VCs need to be
managed for both the RSVP QoS data and the RSVP signalling messages.
The remainder of this document will discuss several approaches to
managing VCs for RSVP and [15] and [16] discuss their application for
implementations in term of interoperability requirement and
implementation guidelines.
4. RSVP VC Management
This section provides more detail on the issues related to the
management of SVCs for RSVP and IntServ.
4.1 VC Initiation
As discussed in section 2.1.1.2, there is an apparent mismatch
between RSVP and ATM. Specifically, RSVP control is receiver oriented
and ATM control is sender oriented. This initially may seem like a
major issue, but really is not. While RSVP reservation (RESV)
requests are generated at the receiver, actual allocation of
resources takes place at the subnet sender. For data flows, this
means that subnet senders will establish all QoS VCs and the subnet
receiver must be able to accept incoming QoS VCs, as illustrated in
Figure 1. These restrictions are consistent with RSVP version 1
processing rules and allow senders to use different flow to VC
mappings and even different QoS renegotiation techniques without
Crawley, et. al. Informational [Page 12]
RFC 2382 Integrated Services and RSVP over ATM August 1998
interoperability problems.
The use of the reverse path provided by point-to-point VCs by
receivers is for further study. There are two related issues. The
first is that use of the reverse path requires the VC initiator to
set appropriate reverse path QoS parameters. The second issue is that
reverse paths are not available with point-to-multipoint VCs, so
reverse paths could only be used to support unicast RSVP
reservations.
4.2 Data VC Management
Any RSVP over ATM implementation must map RSVP and RSVP associated
data flows to ATM Virtual Circuits (VCs). LAN Emulation [17],
Classical IP [10] and, more recently, NHRP [4] discuss mapping IP
traffic onto ATM SVCs, but they only cover a single QoS class, i.e.,
best effort traffic. When QoS is introduced, VC mapping must be
revisited. For RSVP controlled QoS flows, one issue is VCs to use for
QoS data flows.
In the Classic IP over ATM and current NHRP models, a single point-
to-point VC is used for all traffic between two ATM attached hosts
(routers and end-stations). It is likely that such a single VC will
not be adequate or optimal when supporting data flows with multiple
.bp QoS types. RSVP's basic purpose is to install support for flows
with multiple QoS types, so it is essential for any RSVP over ATM
solution to address VC usage for QoS data flows, as shown in Figure
1.
RSVP reservation styles must also be taken into account in any VC
usage strategy.
This section describes issues and methods for management of VCs
associated with QoS data flows. When establishing and maintaining
VCs, the subnet sender will need to deal with several complicating
factors including multiple QoS reservations, requests for QoS
changes, ATM short-cuts, and several multicast specific issues. The
multicast specific issues result from the nature of ATM connections.
The key multicast related issues are heterogeneity, data
distribution, receiver transitions, and end-point identification.
4.2.1 Reservation to VC Mapping
There are various approaches available for mapping reservations on to
VCs. A distinguishing attribute of all approaches is how
reservations are combined on to individual VCs. When mapping
reservations on to VCs, individual VCs can be used to support a
single reservation, or reservation can be combined with others on to
Crawley, et. al. Informational [Page 13]
RFC 2382 Integrated Services and RSVP over ATM August 1998
"aggregate" VCs. In the first case, each reservation will be
supported by one or more VCs. Multicast reservation requests may
translate into the setup of multiple VCs as is described in more
detail in section 4.2.2. Unicast reservation requests will always
translate into the setup of a single QoS VC. In both cases, each VC
will only carry data associated with a single reservation. The
greatest benefit if this approach is ease of implementation, but it
comes at the cost of increased (VC) setup time and the consumption of
greater number of VC and associated resources.
When multiple reservations are combined onto a single VC, it is
referred to as the "aggregation" model. With this model, large VCs
could be set up between IP routers and hosts in an ATM network. These
VCs could be managed much like IP Integrated Service (IIS) point-to-
point links (e.g. T-1, DS-3) are managed now. Traffic from multiple
sources over multiple RSVP sessions might be multiplexed on the same
VC. This approach has a number of advantages. First, there is
typically no signalling latency as VCs would be in existence when the
traffic started flowing, so no time is wasted in setting up VCs.
Second, the heterogeneity problem (section 4.2.2) in full over ATM
has been reduced to a solved problem. Finally, the dynamic QoS
problem (section 4.2.7) for ATM has also been reduced to a solved
problem.
The aggregation model can be used with point-to-point and point-to-
multipoint VCs. The problem with the aggregation model is that the
choice of what QoS to use for the VCs may be difficult, without
knowledge of the likely reservation types and sizes but is made
easier since the VCs can be changed as needed.
4.2.2 Unicast Data VC Management
Unicast data VC management is much simpler than multicast data VC
management but there are still some similar issues. If one considers
unicast to be a devolved case of multicast, then implementing the
multicast solutions will cover unicast. However, some may want to
consider unicast-only implementations. In these situations, the
choice of using a single flow per VC or aggregation of flows onto a
single VC remains but the problem of heterogeneity discussed in the
following section is removed.
4.2.3 Multicast Heterogeneity
As mentioned in section 2.1.3.1 and shown in figure 2, multicast
heterogeneity occurs when receivers request different qualities of
service within a single session. This means that the amount of
requested resources differs on a per next hop basis. A related type
of heterogeneity occurs due to best-effort receivers. In any IP
Crawley, et. al. Informational [Page 14]
RFC 2382 Integrated Services and RSVP over ATM August 1998
multicast group, it is possible that some receivers will request QoS
(via RSVP) and some receivers will not. In shared media networks,
like Ethernet, receivers that have not requested resources can
typically be given identical service to those that have without
complications. This is not the case with ATM. In ATM networks, any
additional end-points of a VC must be explicitly added. There may be
costs associated with adding the best-effort receiver, and there
might not be adequate resources. An RSVP over ATM solution will need
to support heterogeneous receivers even though ATM does not currently
provide such support directly.
RSVP heterogeneity is supported over ATM in the way RSVP reservations
are mapped into ATM VCs. There are four alternative approaches this
mapping. There are multiple models for supporting RSVP heterogeneity
over ATM. Section 4.2.3.1 examines the multiple VCs per RSVP
reservation (or full heterogeneity) model where a single reservation
can be forwarded onto several VCs each with a different QoS. Section
4.2.3.2 presents a limited heterogeneity model where exactly one QoS
VC is used along with a best effort VC. Section 4.2.3.3 examines the
VC per RSVP reservation (or homogeneous) model, where each RSVP
reservation is mapped to a single ATM VC. Section 4.2.3.4 describes
the aggregation model allowing aggregation of multiple RSVP
reservations into a single VC.
4.2.3.1 Full Heterogeneity Model
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -