📄 rfc1167.txt
字号:
RFC 1167 NREN July 1990
direct subsidies should diminish over time and that the
intermediate networks should become self-sustaining. To
accomplish this objective, the intermediate-level networks have
been turning to an increasingly diverse user constituency (see
section above).
The basic model of government backbones, consortium intermediate
level nets and private local area networks has served reasonably
well during the 1980's but it would appear that newer
telecommunications technologies may suggest another potential
paradigm. As the NSFNET moves towards higher speed backbone
operation in the 45 Mb/s range, the importance of carrier
participation in the enterprise has increased. The provision of
backbone capacity at attractive rates by the inter-exchange
carrier (in this case, MCI Communications Corporation) has been
crucial to the feasibility of deploying such a high speed system.
As the third phase of the NREN effort gets underway, it is
becoming increasingly apparent that the "federally-funded
backbone" model may and perhaps even should or must give way to a
vision of commercially operated, gigabit speed systems to which
the users of the NREN have access. If there is federal subsidy in
the new paradigm, it might come through direct provision of
support for networking at the level of individual research grant
or possibly through a system of institutional vouchers permitting
and perhaps even mandating institution-wide network planning and
provision. This differs from the present model in which the
backbone networks are essentially federally owned and operated or
enjoy significant, direct federal support to the provider of the
service.
The importance of such a shift in service provision philosophy
cannot be over-emphasized. In the long run, it eliminates
unnecessary restrictions on the use and application of the
backbone facilities, opening up possibilities for true ubiquity of
access and use without the need for federal control, except to the
extent that any such services are considered in need of
regulation, perhaps. The same arguments might be made for the
intermediate level systems (metropolitan and regional area access
networks). This does NOT mean that private networks ranging from
local consortia to inter-continental systems will be ruled out.
The economics of private networking may still be favorable for
sufficiently heavy usage. It does suggest, however, that
achieving scale and ubiquity may largely rely on publicly
accessible facilities.
Cerf [Page 5]
RFC 1167 NREN July 1990
The Vendors
Apart from service provision, the technology available to the
users and the service providers will come largely from commercial
sources. A possible exception to this may be the switches used in
the gigabit testbed effort, but ultimately, even this technology
will have to be provided commercially if the system is to achieve
the scale necessary to serve as the backbone of the NREN.
An important consequence of this observation is that the NREN
architecture should be fashioned in such a way that it can be
constructed from technology compatible with carrier plans and
available from commercial telecommunications equipment suppliers.
Examples include the use of SONET (Synchronous Optical Network)
optical transmission technology, Switched Multimegabit Data
Services offerings (metropolitan area networks), Asynchronous
Transmission Mode (ATM) switches, frame relays, high speed,
multi-protocol routers, and so on. It is somewhat unclear what
role the public X.25 networks will play, especially where narrow
and broadband ISDN services are available, but it is also not
obvious that they ought to be written off at this point. Where
there is still research and development activity (such as in
network management), the network R&D community can contribute
through experimental efforts and through participation in
standards-making activities (e.g., ANSI, NIST, IAB/IETF, Open
NMF).
OPERATIONS
It seems clear that the current Internet and the anticipated NREN
will have to function in a highly distributed fashion. Given the
diversity of service providers and the richness of the constituent
networks (as to technology and ownership), there will have to be a
good deal of collaboration and cooperation to make the system work.
One can see the necessity for this, based on the existing voice
network in the U.S. with its local and inter-exchange carrier (IEC)
structure. It should be noted that in the presence of the local and
IEC structure, it has proven possible to support private and virtual
private networking as well. The same needs to be true of the NREN.
A critical element of any commercial service is accounting and
billing. It must be possible to identify users (billable parties,
anyway) and to compute usage charges. This is not to say that the
NREN component networks must necessarily bill on the basis of usage.
It may prove preferable to have fixed access charges which might be
modulated by access data rate, as some of the intermediate-level
networks have found. It would not be surprising to find a mixture of
charging policies in which usage charges are preferable for small
Cerf [Page 6]
RFC 1167 NREN July 1990
amounts of use and flat rate charges are preferred for high volume
use.
It will be critical to establish a forum in which operational matters
can be debated and methods established to allow cooperative operation
of the entire system. A number of possibilities present themselves:
use of the Internet Engineering Task Force as a basis, use of
existing telecommunication carrier organizations, or possibly a
consortium of all service providers (and private network operators?).
Even if such an activity is initiated through federal action, it may
be helpful, in the long run, if it eventually embraces a much wider
community.
Agreements are needed on the technical foundations for network
monitoring and management, for internetwork accounting and exchange
payments, for problem identification, tracking, escalation and
resolution. A framework is needed for the support of users of the
aggregate NREN. This suggests cooperative agreements among network
information centers, user service and support organizations to begin
with. Eventually, the cost of such operations will have to be
incorporated into the general cost of service provision. The federal
role, even if it acts as catalyst in the initial stages, may
ultimately focus on the direct support of the users of the system
which it finds it appropriate to support and subsidize (e.g., the
research and educational users of the NREN).
A voucher system has been proposed, in the case of the NREN, which
would permit users to choose which NREN service provider(s) to
engage. The vouchers might be redeemed by the service providers in
the same sort of way that food stamps are redeemed by supermarkets.
Over time, the cost of the vouchers could change so that an initial
high subsidy from the federal government would diminish until the
utility of the vouchers vanished and decisions would be made to
purchase telecommunications services on a pure cost/benefit basis.
IMPORTANCE OF COMMERCIAL INTERESTS
The initial technical architecture should incorporate commercial
service provision where possible so as to avoid the creation of a
system which is solely reliant on the federal government for its
support and operation. It is anticipated that a hybrid system will
develop but, for example, it is possible that the gigabit backbone
components of the system might be strictly commercial from the start,
even if the lower speed components of the NREN vary from private, to
public to federally subsidized or owned and operated.
Cerf [Page 7]
RFC 1167 NREN July 1990
CONCLUSIONS
The idea of creating a National Research and Education Network has
captured the attention and enthusiasm of an extraordinarily broad
collection of interested parties. I believe this is in part a
consequence of the remarkable range of new services and facilities
which could be provided once the network infrastructure is in place.
If the technology of the NREN is commercially viable, one can readily
imagine that an economic engine of considerable proportions might
result from the widespread accessibility of NREN-like facilities to
business sector.
Security Considerations
Security issues are not discussed in this memo.
Author's Address
Vinton G. Cerf
Corporation for National Research Initiatives
1895 Preston White Drive, Suite 100
Reston, VA 22091
EMail: vcerf@NRI.Reston.VA.US
Phone: (703) 620-8990
Cerf [Page 8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -