📄 rfc2805.txt
字号:
Greene, et al. Informational [Page 19]
RFC 2805 MG Control Protocol Requirements April 2000
Table 1: Bearer Types and Applications
Bearer Type Applications Transit Network
================================================================
Trunk+ISUP trunking/access IP, ATM, FR
Voice,Fax,NAS,
Multimedia
Trunk+MF trunking/access IP, ATM, FR
Voice,Fax,NAS,
Multimedia
ISDN trunking/access IP, ATM, FR
Voice,Fax,NAS,
Multimedia
Analogue Voice,Fax, IP, ATM, FR
Text Telephony
Termination in a Restricted Voice,Fax, IP, ATM, FR
Capability Gateway Text Telephony
Application Termination IVR,ARF, Announcement Server,
Voice Recognition Server,...
Multimedia H.323 H.323 Multimedia IP, ATM, FR
Gateway and MCU
Multimedia H.320 H.323 GW and MCU ISDN, IP, ATM, FR
11.1. Media-specific Bearer Types
This section describes requirements for handling terminations
attached to specific types of networks.
11.1.1. Requirements for TDM PSTN (Circuit)
This bearer type is applicable to a Trunking GW, Access GW, ...
The protocol must allow:
a. the MGC to specify the encoding to use on the attached circuit.
b. In general, if something is set by a global signalling protocol
(e.g. ISUP allows mu-Law or A-Law to be signaled using ISUP)
then it must be settable by the protocol.
Greene, et al. Informational [Page 20]
RFC 2805 MG Control Protocol Requirements April 2000
c. TDM attributes:
* Echo cancellation,
* PCM encoding or other voice compression (e.g. mu-law or A-law),
* encryption,
* rate adaptation (e.g. V.110, or V.120).
d. for incoming calls, identification of a specific TDM circuit
(timeslot and facility).
e. for calls outgoing to the circuit network, identification of a
specific circuit or identification of a circuit group with the
indication that the MG must select and return the identification
of an available member of that group.
f. specification of the default encoding of content passing to and
from a given circuit, possibly on a logical or physical circuit
group basis.
g. specification at any point during the life of a connection of
variable aspects of the content encoding, particularly including
channel information capacity.
h. specification at any point during the life of a connection of
loss padding to be applied to incoming and outgoing media
streams at the circuit termination.
i. specification at any point during the life of a connection of
the applicability of echo cancellation to the outgoing media
stream.
j. Multi-rate calls to/from the SCN.
k. H-channel (n x 64K) calls to/from the SCN.
l. B channel aggregation protocols for creating high speed channels
for multimedia over the SCN.
m. Modem terminations and negotiations.
The protocol may also allow:
n. specification of sub-channel media streams,
o. specification of multi-channel media streams.
Greene, et al. Informational [Page 21]
RFC 2805 MG Control Protocol Requirements April 2000
11.1.2. Packet Bearer Type
The protocol must be able to specify:
a. ingress and egress coding (i.e. the way packets coming in and
out are encoded) (including encryption).
b. near and far-end ports and other session parameters for RTP and
RTCP.
The protocol must support reporting of:
c. re-negotiation of codec for cause - for further study
d. on Trunking and Access Gateways, resources capable of more than
one active connection at a time must also be capable of mixing
and packet duplication.
The protocol must allow:
e. specification of parameters for outgoing and incoming packet
flows at separate points in the life of the connection (because
far-end port addresses are typically obtained through a separate
signalling exchange before or after the near-end port addresses
are assigned).
f. the possibility for each Media Gateway to allocate the ports on
which it will receive packet flows (including RTCP as well as
media streams) and report its allocations to the Media Gateway
Controller for signalling to the far end. Note that support of
different IP backbone providers on a per call basis would
require that the ports on which packets flow be selected by the
MGC. (but only if the IP address of the MG is different for each
backbone provider).
g. the specification at any point during the life of a connection
of RTP payload type and RTP session number for each RTP-
encapsulated media flow.
h. the ability to specify whether outgoing flows are to be uni-cast
or multi-cast. Note that on an IP network this information is
implicit in the destination address, but in other networks this
is a connection parameter.
i. invoking of encryption/decryption on media flows and
specification of the associated algorithm and key.
Greene, et al. Informational [Page 22]
RFC 2805 MG Control Protocol Requirements April 2000
The protocol should also allow:
j. the MGC to configure non-RTP (proprietary or other) encapsulated
packet flows.
11.1.3. Bearer type requirements for ATM
This bearer type is applicable to Trunking GW, Access GW, ....
11.1.3.1. Addressing
a. The protocol must be able to specify the following termination
attributes:
* VC identifier,
* VC identifier plus AAL2 slot, and variant of these allowing the
gateway to choose (part of) the identifier,
* remote termination network address, remote MG name.
b. Allow specification of an ATM termination which is to be
assigned to an MG connection as a VC identifier, a VC identifier
plus AAL2 slot, a wild-carded variant of either of these. A
remote termination network address, or a remote MG name could
also be used when the MG can select the VC and change the VC
during the life of the connection by using ATM signalling.
c. Provide an indication by the MG of the VC identifier and
possibly AAL2 slot of the termination actually assigned to a
connection.
d. Provide a means to refer subsequently to that termination.
e. Refer to an existing VCC as the physical interface + Virtual
Path Identifier (VPI) + Virtual Circuit Identifier (VCI).
f. Where the VCC is locally established (SVCs signalled by the
Gateway through UNI or PNNI signalling or similar), the VCC must
be indirectly referred to in terms which are of significance to
both ends of the VCC. For example, a global name or the ATM
address of the ATM devices at each end of the VCC. However, it
is possible/probable that there may be several VCCs between a
given pair of ATM devices. Therefore the ATM address pair must
be further resolved by a VCC identifier unambiguous within the
context of the ATM address pair.
g. refer to a VCC as the Remote GW ATM End System Address + VCCI.
Greene, et al. Informational [Page 23]
RFC 2805 MG Control Protocol Requirements April 2000
h. allow the VCCI to be selected by the MG or imposed on the MG.
i. support all ATM addressing variants (e.g. ATM End System Address
(AESA) and E.164).
11.1.3.2. Connection related requirements
The protocol must:
a. Allow for the de-coupling of creation/deletion of the narrow-
band connection from the creation/deletion of the underlying
VCC.
b. Allow for efficient disconnection of all connections associated
with a physical port or VCC. As an example, this could aggregate
disconnections across a broadband circuit which experienced a
physical error.
c. Allow the connection established using this protocol to be
carried over a VCC, which may be a:
* PVC or SPVC,
* an SVC established on demand, either by the MGC itself or by a
broker acting on its behalf or,
* an SVC originated as required by the local MG, or by the remote
end to the local MG through UNI or PNNI signalling.
d. Allow ATM transport parameters and QoS parameters to be passed
to the MG.
e. Allow blocking and unblocking of a physical interface, a VCC or
an AAL1/AAL2 channel.
The protocol should:
f. Where a VCC is required to be established on a per narrow-band
call basis, allow all necessary information to be passed in one
message.
11.1.3.3. Media adaptation
The protocol must:
a. Allow AAL parameters to be passed to the MG.
Greene, et al. Informational [Page 24]
RFC 2805 MG Control Protocol Requirements April 2000
b. Allow AAL1/AAL2 multiple narrow-band calls to be mapped to a
single VCC. For AAL2, these calls are differentiated within each
VCC by a AAL2 channel identifier. An AAL2 connection may span
more than 1 VCC and transit AAL2 switching devices. ITU
Q.2630.1 [2] defines an end-to-end identifier called the Served
User Generated Reference (SUGR). It carries information from the
originating user of the AAL2 signalling protocol to the
terminating user transparently and unmodified.
c. Allow unambiguous binding of a narrow band call to an AAL2
connection identifier, or AAL1 channel, within the specified
VCC.
d. Allow the AAL2 connection identifier, or AAL1 channel, to be
selected by the MG or imposed on the MG.
e. Allow the use of the AAL2 channel identifier (cid) instead of
the AAL2 connection identifier.
f. Allow the AAL2 voice profile to be imposed or negotiated before
the start of the connection. AAL2 allows for variable length
packets and varying packet rates, with multiple codecs possible
within a given profile. Thus a given call may upgrade or
downgrade the codec within the lifetime of the call. Idle
channels may generate zero bandwidth. Thus an AAL2 VCC may vary
in bandwidth and possibly exceed its contract. Congestion
controls within a gateway may react to congestion by modifying
codec rates/types.
g. Allow the MGC to instruct the MG on how individual narrow-band
calls behave under congestion.
h. Allow for the MGC to specify an AAL5 bearer, with the following
choices:
* Per ATM Forum standard AF-VTOA-0083 [4],
* RTP with IP/UDP,
* RTP without IP/IDP per H.323v2 Annex C [5],
* Compressed RTP per ATM Forum AF-SAA-0124.000 [6].
i. Allow unambiguous binding of a narrow band call to an AAL1
channel within the specified VCC. (In AAL1, multiple narrow-band
calls may be mapped to a single VCC.)
Greene, et al. Informational [Page 25]
RFC 2805 MG Control Protocol Requirements April 2000
11.1.3.4. Reporting requirements
The protocol should:
a. Allow any end-of-call statistics to show loss/restoration of
underlying VCC within the calls duration, together with duration
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -