📄 rfc1887.txt
字号:
There is at least one situation in which this third approach is
particularly appropriate. Suppose that a special interest group of
organizations have deployed their own provider. For example, lets
suppose that the U.S. National Widget Manufacturers and Researchers
have set up a U.S.-wide provider, which is used by corporations who
manufacture widgets, and certain universities which are known for
their widget research efforts. We can expect that the various
organizations which are in the widget group will run their internal
networks as separate routing domains, and most of them will also be
attached to other TRDs (since most of the organizations involved in
widget manufacture and research will also be involved in other
activities). We can therefore expect that many or most of the
organizations in the widget group are dual-homed, with one attachment
for widget-associated communications and the other attachment for
other types of communications. Let's also assume that the total
number of organizations involved in the widget group is small enough
that it is reasonable to maintain a routing table containing one
entry per organization, but that they are distributed throughout a
larger internet with many millions of (mostly not widget-associated)
routing domains.
Rekhter & Li Informational [Page 15]
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
With the third approach, each multi-homed organization in the widget
group would make use of an address assignment based on its other
attachment(s) to TRDs (the attachments not associated with the widget
group). The widget provider would need to maintain routes to the
routing domains associated with the various member organizations.
Similarly, all members of the widget group would need to maintain a
table of routes to the other members via the widget provider.
However, since the widget provider does not inform other general
worldwide TRDs of what addresses it can reach (since the provider is
not intended for use by other outside organizations), the relatively
large set of routing prefixes needs to be maintained only in a
limited number of places. The addresses assigned to the various
organizations which are members of the widget group would provide a
`default route' via each members other attachments to TRDs, while
allowing communications within the widget group to use the preferred
path.
4.4.4 Solution 4
A fourth solution involves assignment of a particular address prefix
for routing domains which are attached to precisely two (or more)
specific routing domains. For example, suppose that there are two
providers `SouthNorthNet' and `NorthSouthNet' which have a very large
number of customers in common (i.e., there are a large number of
routing domains which are attached to both). Rather than getting two
address prefixes these organizations could obtain three prefixes.
Those routing domains which are attached to NorthSouthNet but not
attached to SouthNorthNet obtain an address assignment based on one
of the prefixes. Those routing domains which are attached to
SouthNorthNet but not to NorthSouthNet would obtain an address based
on the second prefix. Finally, those routing domains which are
multi-homed to both of these networks would obtain an address based
on the third prefix. Each of these two TRDs would then advertise two
prefixes to other TRDs, one prefix for leaf routing domains attached
to it only, and one prefix for leaf routing domains attached to both.
This fourth solution is likely to be important when use of public
data networks becomes more common. In particular, it is likely that
at some point in the future a substantial percentage of all routing
domains will be attached to public data networks. In this case,
nearly all government-sponsored networks (such as some current
regionals) may have a set of customers which overlaps substantially
with the public networks.
Rekhter & Li Informational [Page 16]
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
4.4.5 Summary
There are therefore a number of possible solutions to the problem of
assigning IPv6 addresses to multi-homed routing domains. Each of
these solutions has very different advantages and disadvantages.
Each solution places a different real (i.e., financial) cost on the
multi-homed organizations, and on the TRDs (including those to which
the multi-homed organizations are not attached).
In addition, most of the solutions described also highlight the need
for each TRD to develop a policy on whether and under what conditions
to accept addresses that are not based on its own address prefix, and
how such non-local addresses will be treated. For example, a somewhat
conservative policy might be that non-local IPv6 address prefixes
will be accepted from any attached leaf routing domain, but not
advertised to other TRDs. In a less conservative policy, a TRD might
accept such non-local prefixes and agree to exchange them with a
defined set of other TRDs (this set could be an a priori group of
TRDs that have something in common such as geographical location, or
the result of an agreement specific to the requesting leaf routing
domain). Various policies involve real costs to TRDs, which may be
reflected in those policies.
4.5 Private Links
The discussion up to this point concentrates on the relationship
between IPv6 addresses and routing between various routing domains
over transit routing domains, where each transit routing domain
interconnects a large number of routing domains and offers a more-
or-less public service.
However, there may also exist a number of links which interconnect
two routing domains in such a way, that usage of these links may be
limited to carrying traffic only between the two routing domains.
We'll refer to such links as "private".
For example, let's suppose that the XYZ corporation does a lot of
business with MBII. In this case, XYZ and MBII may contract with a
carrier to provide a private link between the two corporations, where
this link may only be used for packets whose source is within one of
the two corporations, and whose destination is within the other of
the two corporations. Finally, suppose that the point-to-point link
is connected between a single router (router X) within XYZ
corporation and a single router (router M) within MBII. It is
therefore necessary to configure router X to know which addresses can
Rekhter & Li Informational [Page 17]
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
be reached over this link (specifically, all addresses reachable in
MBII). Similarly, it is necessary to configure router M to know which
addresses can be reached over this link (specifically, all addresses
reachable in XYZ Corporation).
The important observation to be made here is that the additional
connectivity due to such private links may be ignored for the purpose
of IPv6 address allocation, and do not pose a problem for routing on
a larger scale. This is because the routing information associated
with such connectivity is not propagated throughout the internet, and
therefore does not need to be collapsed into a TRD's prefix.
In our example, let's suppose that the XYZ corporation has a single
connection to a regional, and has therefore uses the IPv6 address
space from the space given to that regional. Similarly, let's
suppose that MBII, as an international corporation with connections
to six different providers, has chosen the second solution from
Section 4.4, and therefore has obtained six different address
allocations. In this case, all addresses reachable in the XYZ
Corporation can be described by a single address prefix (implying
that router M only needs to be configured with a single address
prefix to represent the addresses reachable over this link). All
addresses reachable in MBII can be described by six address prefixes
(implying that router X needs to be configured with six address
prefixes to represent the addresses reachable over the link).
In some cases, such private links may be permitted to forward traffic
for a small number of other routing domains, such as closely
affiliated organizations. This will increase the configuration
requirements slightly. However, provided that the number of
organizations using the link is relatively small, then this still
does not represent a significant problem.
Note that the relationship between routing and IPv6 addressing
described in other sections of this paper is concerned with problems
in scaling caused by large, essentially public transit routing
domains which interconnect a large number of routing domains.
However, for the purpose of IPv6 address allocation, private links
which interconnect only a small number of private routing domains do
not pose a problem, and may be ignored. For example, this implies
that a single leaf routing domain which has a single connection to a
`public' provider (e.g., the Alternet), plus a number of private
links to other leaf routing domains, can be treated as if it were
single-homed to the provider for the purpose of IPv6 address
allocation. We expect that this is also another way of dealing with
multi-homed domains.
Rekhter & Li Informational [Page 18]
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
4.6 Zero-Homed Routing Domains
Currently, a very large number of organizations have internal
communications networks which are not connected to any service
providers. Such organizations may, however, have a number of private
links that they use for communications with other organizations. Such
organizations do not participate in global routing, but are satisfied
with reachability to those organizations with which they have
established private links. These are referred to as zero-homed
routing domains.
Zero-homed routing domains can be considered as the degenerate case
of routing domains with private links, as discussed in the previous
section, and do not pose a problem for inter-domain routing. As
above, the routing information exchanged across the private links
sees very limited distribution, usually only to the routing domain at
the other end of the link. Thus, there are no address abstraction
requirements beyond those inherent in the address prefixes exchanged
across the private link.
However, it is important that zero-homed routing domains use valid
globally unique IPv6 addresses. Suppose that the zero-homed routing
domain is connected through a private link to a routing domain.
Further, this routing domain participates in an internet that
subscribes to the global IPv6 addressing plan. This domain must be
able to distinguish between the zero-homed routing domain's IPv6
addresses and any other IPv6 addresses that it may need to route to.
The only way this can be guaranteed is if the zero-homed routing
domain uses globally unique IPv6 addresses.
Whereas globally unique addresses are necessary to differentiate
between destinations in the Internet, globally unique addresses may
not be sufficient to guarantee global connectivity. If a zero-homed
routing domain gets connected to the Internet, the block of addresses
used within the domain may not be related to the block of addresses
allocated to the domain's direct provider. In order to maintain the
gains given by hierarchical routing and address assignment the zero-
homed domain should under such circumstances change addresses
assigned to the systems within the domain.
4.7 Continental aggregation
Another level of hierarchy may also be used in this addressing scheme
to further reduce the amount of routing information necessary for
Rekhter & Li Informational [Page 19]
RFC 1887 IPv6 Unicast Address Allocation Architecture December 1995
global routing. Continental aggregation is useful because
continental boundaries provide natural barriers to topological
connection and administrative boundaries. Thus, it presents a
natural boundary for another level of aggregation of inter-domain
routing information. To make use of this, it is necessary that each
continent be assigned an appropriate contiguous block of addresses.
Providers (both direct and indirect) within that continent would
allocate their addresses from this space. Note that there are
numerous exceptions to this, in which a service provider (either
direct or indirect) spans a continental division. These exceptions
can be handled similarly to multi-homed routing domains, as discussed
above.
The benefit of continental aggregation is that it helps to absorb the
entropy introduced within continental routing caused by the cases
where an organization must use an address prefix which must be
advertised beyond its direct provider. In such cases, if the address
is taken from the continental prefix, the additional cost of the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -