📄 rfc1054.txt
字号:
Network Working Group S. Deering
Request for Comments: 1054 Stanford University
Obsoletes: RFC 988 May 1988
Host Extensions for IP Multicasting
1. STATUS OF THIS MEMO
This memo specifies the extensions required of a host implementation
of the Internet Protocol (IP) to support multicasting. It is
proposed as a standard for IP multicasting in the Internet. This
specification is a major revision of RFC-988; changes from RFC-988
are listed in an Appendix. Distribution of this memo is unlimited.
2. INTRODUCTION
IP multicasting is defined as the transmission of an IP datagram to a
"host group", a set of zero or more hosts identified by a single IP
destination address. A multicast datagram is delivered to all
members of its destination host group with the same "best-efforts"
reliability as regular unicast IP datagrams, i.e., the datagram is
not guaranteed to arrive intact at all members of the destination
group or in the same order relative to other datagrams.
The membership of a host group is dynamic; that is, hosts may join
and leave groups at any time. There is no restriction on the
location or number of members in a host group. A host may be a
member of more than one group at a time. A host need not be a member
of a group to send datagrams to it.
A host group may be permanent or transient. A permanent group has a
well-known, administratively assigned IP address. It is the address,
not the membership of the group, that is permanent; at any time a
permanent group may have any number of members, even zero. Those IP
multicast addresses that are not reserved for permanent groups are
available for dynamic assignment to transient groups which exist only
as long as they have members.
Internetwork forwarding of IP multicast datagrams is handled by
"multicast routers" which may be co-resident with, or separate from,
internet gateways. A host transmits an IP multicast datagram as a
local network multicast which reaches all immediately-neighboring
members of the destination host group. If the datagram has an IP
time-to-live greater than 1, the multicast router(s) attached to the
local network take responsibility for forwarding it towards all other
networks that have members of the destination group. On those other
member networks that are reachable within the IP time-to-live, an
Deering [Page 1]
RFC 1054 Host Extensions for IP Multicasting May 1988
attached multicast router completes delivery by transmitting the
datagram as a local multicast.
This memo specifies the extensions required of a host IP
implementation to support IP multicasting, where a "host" is any
internet host or gateway other than those acting as multicast
routers. The algorithms and protocols used within and between
multicast routers are transparent to hosts and will be specified in
separate documents. This memo also does not specify how local
network multicasting is accomplished for all types of network,
although it does specify the required service interface to an
arbitrary local network and gives an Ethernet specification as an
example. Specifications for other types of network will be the
subject of future memos.
3. LEVELS OF CONFORMANCE
There are three levels of conformance to this specification:
Level 0: no support for IP multicasting.
There is, at this time, no requirement that all IP implementations
support IP multicasting. Level 0 hosts will, in general, be
unaffected by multicast activity. The only exception arises on some
types of local network, where the presence of level 1 or 2 hosts may
cause misdelivery of multicast IP datagrams to level 0 hosts. Such
datagrams can easily be identified by the presence of a class D IP
address in their destination address field; they should be quietly
discarded by hosts that do not support IP multicasting. Class D
addresses are described in section 4 of this memo.
Level 1: support for sending but not receiving multicast IP
datagrams.
Level 1 allows a host to partake of some multicast-based services,
such as resource location or status reporting, but it does not allow
a host to join any host groups. An IP implementation may be upgraded
from level 0 to level 1 very easily and with little new code. Only
sections 4, 5, and 6 of this memo are applicable to level 1
implementations.
Level 2: full support for IP multicasting.
Level 2 allows a host to join and leave host groups, as well as send
IP datagrams to host groups. It requires implementation of the
Internet Group Management Protocol (IGMP) and extension of the IP and
local network service interfaces within the host. All of the
following sections of this memo are applicable to level 2
Deering [Page 2]
RFC 1054 Host Extensions for IP Multicasting May 1988
implementations.
4. HOST GROUP ADDRESSES
Host groups are identified by class D IP addresses, i.e., those with
"1110" as their high-order four bits. Class E IP addresses, i.e.,
those with "1111" as their high-order four bits, are reserved for
future addressing modes.
In Internet standard "dotted decimal" notation, host group addresses
range from 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is
guaranteed not to be assigned to any group, and 224.0.0.1 is assigned
to the permanent group of all IP hosts. This is used to address all
multicast hosts on the directly connected network. There is no
multicast address (or any other IP address) for all hosts on the
total Internet. The addresses of other well-known, permanent groups
are to be published in "Assigned Numbers".
Appendix II contains some background discussion of several issues
related to host group addresses.
Deering [Page 3]
RFC 1054 Host Extensions for IP Multicasting May 1988
5. MODEL OF A HOST IP IMPLEMENTATION
The multicast extensions to a host IP implementation are specified in
terms of the layered model illustrated below. In this model, ICMP
and (for level 2 hosts) IGMP are considered to be implemented within
the IP module, and the mapping of IP addresses to local network
addresses is considered to be the responsibility of local network
modules. This model is for expository purposes only, and should not
be construed as constraining an actual implementation.
| |
| Upper-Layer Protocol Modules |
|__________________________________________________________|
--------------------- IP Service Interface -----------------------
__________________________________________________________
| | | |
| | ICMP | IGMP |
| IP |______________|______________|
| Module |
| |
|__________________________________________________________|
---------------- Local Network Service Interface -----------------
__________________________________________________________
| | |
| Local | IP-to-local address mapping |
| Network | (e.g., ARP) |
| Modules |_____________________________|
| (e.g., Ethernet) |
| |
To support level 1 multicasting, a host IP implementation must
support the transmission of multicast IP datagrams. To support level
2 IP multicasting, a host must also support the reception of
multicast IP datagrams. Each of these two new services is described
in a separate section, below. For each service, extensions are
specified for the IP service interface, the IP module, the local
network service interface, and an Ethernet local network module.
Extensions to local network modules other than Ethernet are mentioned
briefly, but are not specified in detail.
Deering [Page 4]
RFC 1054 Host Extensions for IP Multicasting May 1988
6. SENDING MULTICAST IP DATAGRAMS
6.1. Extensions to the IP Service Interface
Multicast IP datagrams are sent using the same "Send IP" operation
used to send unicast IP datagrams; an upper-layer protocol module
merely specifies an IP host group address, rather than an individual
IP address, as the destination. However, a number of extensions may
be necessary or desirable.
First, the service interface should provide a way for the upper-layer
protocol to specify the IP time-to-live of an outgoing multicast
datagram, if such a capability does not already exist. If the
upper-layer protocol chooses not to specify a time-to-live, it should
default to 1 for all multicast IP datagrams, so that an explicit
choice is required to multicast beyond a single network.
Second, for hosts that may be attached to more than one network, the
service interface should provide a way for the upper-layer protocol
to identify which network interface is be used for the multicast
transmission. Only one interface is used for the initial
transmission; multicast routers are responsible for forwarding to any
other networks, if necessary. If the upper-layer protocol chooses
not to identify an outgoing interface, a default interface should be
used, preferably under the control of system management.
Third (level 2 implementations only), for the case in which the host
is itself a member of a group to which a datagram is being sent, the
service interface should provide a way for the upper-layer protocol
to inhibit local delivery of the datagram; by default, a copy of the
datagram is looped back. This is a performance optimization for
upper-layer protocols that restrict the membership of a group to one
process per host (such as a routing protocol), or that handle
loopback of group communication at a higher layer (such as a
multicast transport protocol).
6.2. Extensions to the IP Module
To support the sending of multicast IP datagrams, the IP module must
be extended to recognize IP host group addresses when routing
outgoing datagrams. Most IP implementations include the following
logic:
if IP-destination is on the same local network,
send datagram locally to IP-destination
else
send datagram locally to GatewayTo( IP-destination )
Deering [Page 5]
RFC 1054 Host Extensions for IP Multicasting May 1988
To allow multicast transmissions, the routing logic must be changed
to:
if IP-destination is on the same local network
or IP-destination is a host group,
send datagram locally to IP-destination
else
send datagram locally to GatewayTo( IP-destination )
If the sending host is itself a member of the destination group, a
copy of the outgoing datagram must be looped-back for local delivery,
unless inhibited by the sender. (Level 2 implementations only.)
A host group address should not be placed in the source address field
or anywhere in a source routing option of an outgoing IP datagram.
6.3. Extensions to the Local Network Service Interface
No change to the local network service interface is required to
support the sending of multicast IP datagrams. The IP module merely
specifies an IP host group destination, rather than an individual IP
destination, when it invokes the existing "Send Local" operation.
6.4. Extensions to an Ethernet Local Network Module
The Ethernet directly supports the sending of local multicast packets
by allowing multicast addresses in the destination field of Ethernet
packets. All that is needed to support the sending of multicast IP
datagrams is a procedure for mapping IP host group addresses to
Ethernet multicast addresses.
An IP host group address is mapped to an Ethernet multicast address
by placing the low-order 23-bits of the IP address into the low-order
23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex).
Because there are 28 significant bits in an IP host group address,
more than one host group address may map to the same Ethernet
multicast address.
6.5. Extensions to Local Network Modules other than Ethernet
Other networks that directly support multicasting, such as rings or
buses conforming to the IEEE 802.2 standard, may be handled the same
way as Ethernet for the purpose of sending multicast IP datagrams.
For a network that supports broadcast but not multicast, such as the
Experimental Ethernet, all IP host group addresses may be mapped to a
single local broadcast address (at the cost of increased overhead on
all local hosts). For a point-to-point link joining two hosts (or a
Deering [Page 6]
RFC 1054 Host Extensions for IP Multicasting May 1988
host and a multicast router), multicasts should be transmitted
exactly like unicasts. For a store-and-forward network like the
ARPANET or a public X.25 network, all IP host group addresses might
be mapped to the well-known local address of an IP multicast router;
a router on such a network would take responsibility for completing
multicast delivery within the network as well as among networks.
7. RECEIVING MULTICAST IP DATAGRAMS
7.1. Extensions to the IP Service Interface
Incoming multicast IP datagrams are received by upper-layer protocol
modules using the same "Receive IP" operation as normal, unicast
datagrams. Selection of a destination upper-layer protocol is based
on the protocol field in the IP header, regardless of the destination
IP address. However, before any datagrams destined to a particular
group can be received, an upper-layer protocol must ask the IP module
to join that group. Thus, the IP service interface must be extended
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -