📄 rfc1285.txt
字号:
Network Working Group J. Case
Request for Comments: 1285 SNMP Research, Incorporated
January 1992
FDDI Management Information Base
Status of this Memo
This memo is an extension to the SNMP MIB. This RFC specifies an IAB
standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the
current edition of the "IAB Official Protocol Standards" for the
standardization state and status of this protocol. Distribution of
this memo is unlimited.
Table of Contents
1. Abstract .............................................. 1
2. The Network Management Framework....................... 1
3. Objects ............................................... 2
3.1 Format of Definitions ................................ 2
4. Overview .............................................. 3
4.1 Textual Conventions .................................. 3
5. Object Definitions .................................... 4
5.1 The SMT Group ........................................ 5
5.2 The MAC Group ........................................ 15
5.3 The PATH Group ....................................... 27
5.4 The PORT Group ....................................... 27
5.5 The ATTACHMENT Group ................................. 38
5.6 The Chip Set Group ................................... 42
6. Acknowledgements ...................................... 43
7. References ............................................ 45
Security Considerations................................... 46
Author's Address.......................................... 46
1. Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP-based internets.
In particular, it defines objects for managing devices which
implement the FDDI.
2. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
Case [Page 1]
RFC 1285 FDDI MIB January 1992
RFC 1155 which defines the SMI, the mechanisms used for describing
and naming objects for the purpose of management. RFC 1212
defines a more concise description mechanism, which is wholly
consistent with the SMI.
RFC 1156 which defines MIB-I, the core set of managed objects for
the Internet suite of protocols. RFC 1213, defines MIB-II, an
evolution of MIB-I based on implementation experience and new
operational requirements.
RFC 1157 which defines the SNMP, the protocol used for network
access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
3. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [5]
defined in the SMI. In particular, each object has a name, a syntax,
and an encoding. The name is an object identifier, an
administratively assigned name, which specifies an object type. The
object type together with an object instance serves to uniquely
identify a specific instantiation of the object. For human
convenience, we often use a textual string, termed the OBJECT
DESCRIPTOR, to also refer to the object type.
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1 language is used for
this purpose. However, the SMI [1] purposely restricts the ASN.1
constructs which may be used. These restrictions are explicitly made
for simplicity.
The encoding of an object type is simply how that object type is
represented using the object type's syntax. Implicitly tied to the
notion of an object type's syntax and encoding is how the object type
is represented when being transmitted on the network.
The SMI specifies the use of the basic encoding rules of ASN.1 [6],
subject to the additional requirements imposed by the SNMP.
3.1. Format of Definitions
Section 5 contains contains the specification of all object types
contained in this MIB module. The object types are defined using the
conventions defined in the SMI, as amended by the extensions
Case [Page 2]
RFC 1285 FDDI MIB January 1992
specified in [7].
4. Overview
This document defines the managed objects for FDDI devices which are
to be accessible via the Simple Network Management Protocol (SNMP).
At present, this applies to these values of the ifType variable in
the Internet-standard MIB:
fddi(15)
For these interfaces, the value of the ifSpecific variable in the
MIB-II [4] has the OBJECT IDENTIFIER value:
fddi OBJECT IDENTIFIER ::= { transmission 15 }
The definitions of the objects presented here draws heavily from
related work in the ANSI X3T9.5 committee and the SMT subcommittee of
that committee [8]. In fact, the definitions of the managed objects
in this document are, to the maximum extent possible, identical to
those identified by the ANSI committee. The semantics of each
managed object should be the same with syntactic changes made as
necessary to recast the objects in terms of the Internet-standard SMI
and MIB so as to be compatible with the SNMP. Examples of these
syntactic changes include remapping booleans to enumerated integers,
remapping bit strings to octet strings, and the like. In addition,
the naming of the objects was changed to achieve compatibility.
These minimal syntactic changes with no semantic changes should allow
implementations of SNMP manageable FDDI systems to share
instrumentation with other network management schemes and thereby
minimize implementation cost. In addition, the translation of
information conveyed by managed objects from one network management
scheme to another is eased by these shared definitions.
Only the essential variables, as indicated by their mandatory status
in the ANSI specification were retained in this document. The
importance of variables which have an optional status in the ANSI
specification were perceived as being less widely accepted.
4.1. Textual Conventions
Several new datatypes are introduced as a textual convention in this
MIB document. These textual conventions enhance the readability of
the document and ease comparisons with its ANSI counterpart. It
should be noted that the introduction of the following textual
conventions has no effect on either the syntax nor the semantics of
any managed objects. The use of these is merely an artifact of the
Case [Page 3]
RFC 1285 FDDI MIB January 1992
explanatory method used. Objects defined in terms of one of these
methods are always encoded by means of the rules that define the
primitive type. Hence, no changes to the SMI or the SNMP are
necessary to accommodate these textual conventions which are adopted
merely for the convenience of readers and writers in pursuit of the
elusive goal of clear, concise, and unambiguous MIB documents.
5. Object Definitions
RFC1285-MIB DEFINITIONS ::= BEGIN
IMPORTS
Counter
FROM RFC1155-SMI
transmission
FROM RFC1213-MIB
OBJECT-TYPE
FROM RFC-1212;
-- This MIB module uses the extended OBJECT-TYPE macro as
-- defined in [7].
-- this is the FDDI MIB module
fddi OBJECT IDENTIFIER ::= { transmission 15 }
-- textual conventions
FddiTime ::= INTEGER (0..2147483647)
-- This data type specifies octet units of 80 nanoseconds as
-- an integer value. It is used for Path Latency and
-- Synchronous Bandwidth values. The encoding is normal
-- integer representation (not twos complement).
FddiResourceId ::= INTEGER (0..65535)
-- This data type is used to refer to an instance of a MAC,
-- PORT, PATH, or ATTACHMENT Resource ID. Indexing begins
-- at 1. Zero is used to indicate the absence of a resource.
FddiSMTStationIdType ::= OCTET STRING (SIZE (8))
-- The unique identifier for the FDDI station. This is a
-- string of 8 octets, represented as
-- X' yy yy xx xx xx xx xx xx'
-- with the low order 6 octet (xx) from a unique IEEE
-- assigned address. The high order two bits of the IEEE
-- address, the group address bit and the administration bit
Case [Page 4]
RFC 1285 FDDI MIB January 1992
-- (Universal/Local) bit should both be zero. The first two
-- octets, the yy octets, are implementor-defined.
--
-- The representation of the address portion of the station id
-- is in the IEEE (ANSI/IEEE P802.1A) canonical notation for
-- 48 bit addresses. The canonical form is a 6-octet string
-- where the first octet contains the first 8 bits of the
-- address, with the I/G(Individual/Group) address bit as the
-- least significant bit and the U/L (Universal/Local) bit
-- as the next more significant bit, and so on. Note that
-- addresses in the ANSI FDDI standard SMT frames are
-- represented in FDDI MAC order.
FddiMACLongAddressType ::= OCTET STRING (SIZE (6))
-- The representation of long MAC addresses as management
-- values is in the IEEE (ANSI/IEEE P802.1A) canonical
-- notation for 48 bit addresses. The canonical form is a
-- 6-octet string where the first octet contains the first 8
-- bits of the address, with the I/G (Individual/Group)
-- address bit as the least significant bit and the U/L
-- (Universal/Local) bit as the next more significant bit,
-- and so on. Note that the addresses in the SMT frames are
-- represented in FDDI MAC order.
-- groups in the FDDI MIB module
snmpFddiSMT OBJECT IDENTIFIER ::= { fddi 1 }
snmpFddiMAC OBJECT IDENTIFIER ::= { fddi 2 }
snmpFddiPATH OBJECT IDENTIFIER ::= { fddi 3 }
snmpFddiPORT OBJECT IDENTIFIER ::= { fddi 4 }
snmpFddiATTACHMENT OBJECT IDENTIFIER ::= { fddi 5 }
snmpFddiChipSets OBJECT IDENTIFIER ::= { fddi 6 }
-- the SMT group
-- Implementation of the SMT group is mandatory for all
-- systems which implement manageable FDDI subsystems.
snmpFddiSMTNumber OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
Case [Page 5]
RFC 1285 FDDI MIB January 1992
"The number of SMT implementations (regardless of
their current state) on this network management
application entity. The value for this variable
must remain constant at least from one re-
initialization of the entity's network management
system to the next re-initialization."
::= { snmpFddiSMT 1 }
-- the SMT table
snmpFddiSMTTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpFddiSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of SMT entries. The number of entries is
given by the value of snmpFddiSMTNumber."
::= { snmpFddiSMT 2 }
snmpFddiSMTEntry OBJECT-TYPE
SYNTAX SnmpFddiSMTEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"An SMT entry containing information common to a
given SMT."
INDEX { snmpFddiSMTIndex }
::= { snmpFddiSMTTable 1 }
SnmpFddiSMTEntry ::=
SEQUENCE {
snmpFddiSMTIndex
INTEGER,
snmpFddiSMTStationId
FddiSMTStationIdType,
snmpFddiSMTOpVersionId
INTEGER,
snmpFddiSMTHiVersionId
INTEGER,
snmpFddiSMTLoVersionId
INTEGER,
snmpFddiSMTMACCt
INTEGER,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -