📄 rfc966.txt
字号:
validated against the list, and incoming datagrams which are not
destined to an address on the list are discarded. The addresses
on the list change dynamically as IP users create, join and leave
groups.
Deering & Cheriton [Page 7]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
5.2. Group Management
To support the group management operations of CreateGroup,
JoinGroup and LeaveGroup, an IP module must interact with one or
more multicast agents which reside in neighbouring gateways or
other special-purpose hosts. These interaction are handled by an
Internet Group Management Protocol (IGMP) which, like ICMP [15],
is an integral part of the IP implementation. A proposed
specification for IGMP is given in Appendix I.
5.3. Multicast Delivery
In order to transmit a datagram destined to a host group, an IP
module must map the destination group address into a local network
address. As with individual IP addresses, the mapping algorithm
is local-network- specific. On networks that directly support
multicast, the IP host group address is mapped to a local network
multicast address that includes all local members of the host
group plus one or more multicast agents. For networks that do not
directly support multicast, the mapping may be to a more general
broadcast address, to a list of local unicast addresses, or
perhaps to the address of a single machine that handles
multi-destination relaying.
5.4. Distance Control
The existing Time to Live field in the IP header can be used for
crude control over the delivery radius of multicast datagrams. To
provide finer-grain control, a new IP option is defined to specify
the maximum delivery distance in "administrative units", such as
"this network", "this department", "this company", "this country",
etc. The set of units and their encoding is to be determined.
6. Implementation
In this section, we sketch a design for implementing the host group
model within the Internet. This description of the design is given
to further support the feasibility of the host group model as well as
point out some of the problems yet to be addressed.
Implementation of host groups involves implementing a binding
mechanism (binding Internet addresses to zero or more hosts) and a
packet delivery mechanism (delivering a packet to each host to which
its destination address binds). This facility fits most naturally
into the gateways of the Internet and the switching nodes of the
constituent point-to-point networks (as opposed to separate machines)
because multicast binding and delivery is a natural extension of the
Deering & Cheriton [Page 8]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
unicast binding and delivery (i.e. routing plus store-and-forward).
That is, a multicast packet is routed and transmitted to multiple
destinations, rather than to a single destination.
In the following description, we start with a basic, simple
implementation that provides coverage and then refine this mechanism
with various optimizations to improve efficiency of delivery and
group management.
6.1. Basic Implementation
A host group defines a network group, which is the set of networks
containing current members of the host group. When a packet is
sent to a host group, a copy is delivered to each network in the
corresponding network group. Then, within each network, a copy is
delivered to each host belonging to the group.
To support such multicast delivery, every Internet gateway
maintains the following data structures:
- routing table: conventional Internet routing information,
including the distance and direction to the nearest gateway
on every network.
- network membership table: A set of records, one for every
currently existing host group. The network membership record
for a group lists the network group, i.e. the networks that
contain members of the group.
- local host membership table: A set of records, one for each
host group that has members on directly attached networks.
Each local host membership record indicates the local hosts
that are members of the associated host group. For networks
that support multicast or broadcast, the record may contain
only the local network-specific multicast address used by the
group plus a count of local members. Otherwise, local group
members may be identified by a list of unicast addresses to
be used in the software implementation of multicast within
the network.
A host invokes the multicast delivery service by sending a
group-destined IP datagram to an immediate neighbour gateway (i.e.
a gateway that is directly attached to the same network as the
sending host). Upon receiving a group-destined datagram from a
directly attached network, a gateway looks up the network
membership record corresponding to the destination address of the
datagram. For each of the networks listed in the membership
Deering & Cheriton [Page 9]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
record, the gateway consults its routing table. If, according to
the routing table, a member network is directly attached, the
gateway transmits a copy of the datagram on that network, using
the network-specific multicast address allocated for the group on
that network. For a member network that is not directly attached
the gateway creates a copy of the datagram with an additional
inter-gateway header identifying the destination network. This
inter-gateway datagram is forwarded to the nearest gateway on the
destination network, using conventional store-and-forward routing
techniques. At the gateway on the destination network, the
datagram is stripped of its inter-gateway header and transmitted
to the group's multicast address on that network. The datagram is
dropped by the relaying gateways whenever it exceeds its distance
limit.
The network membership records and the network-specific multicast
structures are updated in response to group management requests
from hosts. A host sends a request to create, join, or leave a
group to an immediate neighbour gateway. If the host requests
creation of a group, a new network membership record is created by
the serving gateway and distributed to all other gateways. If the
host is the first on its network to join a group, or if the host
is the last on its network to leave a group, the group's network
membership record is updated in all gateways. The updates need
not be performed atomically at all gateways, due to the datagram
delivery semantics; hosts can tolerate misrouted and lost packets
caused by temporary gateway inconsistencies, as long as the
inconsistencies are resolved within normal host retransmission
periods. In this respect, the network membership data is similar
to the network reachability data maintained by conventional
routing algorithms, and can be handled by similar mechanisms.
In many cases, a host joins a group that already has members on
the same network, or leaves a group that has remaining members on
the same network. This is then a local matter between the hosts
and gateways on a single network: only the local host membership
table needs to be updated to include or exclude the host.
This basic implementation strategy meets the delivery requirements
stated at the end of Section 4. However, it is far from optimal,
in terms of either delivery efficiency or group management
overhead. Below, we discuss some further refinements to the basic
implementation.
Deering & Cheriton [Page 10]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
6.2. Multicast Routing Between Networks
Multicast routing among the Internet gateways is similar to
store-and-forward routing in a point-to-point network. The main
difference is that the links between the nodes (gateways) can be a
mixture of broadcast and unicast-type networks with widely
different throughput and delay characteristics. In addition,
packets are addressed to networks rather than hosts (at the
gateway level).
We intend to use the extended reverse path forwarding algorithm of
Dalal and Metcalfe [10]. Although originally designed for
broadcast, it is a simple and efficient technique that can serve
well for multicast delivery if network membership records in each
gateway are augmented with information from neighbouring gateways.
This algorithm uses the source network identifier, rather than a
destination network identifier to make routing decisions. Since
the source address of a datagram may be a group address, it cannot
be used to identify the source network of the datagram; the first
gateway must add a header specifying the source network. This
approach minimizes redundant transmissions when multiple
destination networks are reachable across a common intergateway
link, a problem with the basic implementation described above.
Note that we eliminate from consideration techniques that fail to
deliver along the branches of the shortest delay tree rooted at
the source, such as Wall's center-based forwarding [16] because
this compromises the meaning of the multicast distance parameter
and detracts from multicast performance in general. We also
rejected the approach of having a multicast packet carry more than
one network identifier in its inter-gateway header to indicate
multiple destination networks because the resulting variable
length headers would cause buffering and fragmentation problems in
the gateways.
6.3. Multicasting Within Networks
A simple optimization within a network is to have the sender use
the local multicast address of a host group for its initial
transmission. This allows the local host group members to receive
the transmission immediately along with the gateways (which must
now "eavesdrop" on all multicast transmissions). A gateway only
forwards the datagram if the destination host group includes
members on other networks. This scheme reduces the cost to reach
local group members to one packet transmission from two required
Deering & Cheriton [Page 11]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
in the basic implementation <3> so transmission to local members
is basically as efficient as the local multicast support provided
by the network.
A similar opportunity for reducing packet traffic arises when a
datagram must traverse a network to get from one gateway to
another, and that network also holds members of the destination
group. Again, use of a network-specific multicast address which
includes member hosts plus gateways can achieve the desired
effect. However, in this case, hosts must be prepared to accept
datagrams that include an inter-gateway header or, alternatively,
every datagram must include a spare field in its header for use by
gateways in lieu of an additional inter-gateway header.
6.4. Distributing Membership Information
A refinement to host group membership maintenance is to store the
host group membership record for a group only in those gateways
that are directly connected to member networks. Information about
other groups is cached in the gateway only while it is required to
route to those other groups. When a gateway receives a datagram
to be forwarded to a group for which it has no network membership
record (which can only happen if the gateway is not directly
connected to a member network), it takes the following action.
The gateway assumes temporarily that the destination group has
members on every network in the internetwork, except those
directly attached to the sending gateway, and routes the datagram
accordingly. In the inter-gateway header of the outgoing packet,
the gateway sets a bit indicating that it wishes to receive a copy
of the network membership record for the destination host group.
When such a datagram reaches a gateway on a member network, that
gateway sends a copy of the membership record back to the
requesting gateway and clears the copy request bit in the
datagram.
Copies of network membership records sent to gateways outside of a
group's member networks are cached for use in subsequent
transmissions by those gateways. That raises the danger of a
stale cache entry leading to systematic delivery failures. To
counter that problem, the inter-gateway header contains a field
which is a hash value or checksum on the network membership record
used to route the datagram. Gateways on member networks compare
the checksum on incoming datagrams with their up-to-date records.
If the checksums don't match, an up-to-date copy of the record is
returned to the gateway with the bad record.
This caching strategy minimizes intergateway traffic for groups
Deering & Cheriton [Page 12]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
that are only used within one network or within the set of
networks on which members reside, the expected common cases.
Partial replication with caching also reduces the overhead for
network traffic to disseminate updates and keep all copies
consistent. Finally, it also reduces the total space required in
all the gateways to support a large number of host groups.
We have not addressed here the problem of maintaining up-to-date,
consistent network membership records within the set of gateways
connected to members of a group. This can be viewed as a
distributed database problem which has been well studied in other
contexts. The loose consistency requirements on network
membership records suggest that the techniques used in Grapevine
[3] might be useful for this application.
7. Related Work
The use of unreliable multicast by higher-level protocols and the
implementation of multicast within various individual networks have
been well-studied (see [7] for references and discussion). However,
there is relatively little published work on the use or
implementation of internetwork multicasting.
Boggs, in his thesis [4], describes a number of distributed
applications that are impossible or very awkward to support without
the flexible binding nature of broadcast addressing. Although he
recognizes that almost all of his applications would be best served
by a multicast mechanism, he advocates the use of "directed
broadcast" because it is easy to implement within many kinds of
networks and can be extended across an internetwork without placing
any new burden on internetwork gateways. In RFC-919 [13], Mogul
proposes adopting directed broadcast for the DARPA Internet.
Broadcasting has the undesirable side effect of delivering packets to
more hosts than necessary, thus incurring overhead on uninvolved
parties and possibly creating security problems. As more and more
applications take advantage of broadcasting, the overhead on all
hosts continues to rise. Clearly, broadcast does not scale up to a
large internetwork. As an attempt to handle the scaling problem,
directed broadcast is less attractive than true multicast because the
set of hosts that can be reached by a single "send" operation is an
artifact of the internetwork topology, rather than a grouping that is
meaningful to the sender.
In RFC-947 [12], Lebowitz and Mankins propose the use of broadcast
Deering & Cheriton [Page 13]
RFC 966 December 1985
Host Groups: A Multicast Extension to the Internet Protocol
repeaters that pick up broadcast datagrams from one network and relay
them to other networks for broadcast there. This technique is even
less selective of its targets than Bogg's directed broadcast method.
Aguilar [1] suggests allowing an IP datagram to carry multiple
destination addresses, which are used by the gateways to route the
datagram to each recipient. Such a facility would alleviate some of
the inefficiencies of sending individual datagrams to a group, but it
would not be able to take advantage of local network multicast
facilities. More seriously, Aguilar's scheme requires the sender to
know the individual IP addresses of all members of the destination
group and thus lacks the flexible binding nature of true multicast or
broadcast.
8. Concluding Remarks
We have described a model of multicast communication for the
Internet. As an extension of the existing Internet architecture, it
views unicast communication and time-to-live constraints as special
cases of the more general form of communication arising with
multicast. We have argued that this model is implementable in the
Internet and that it provides a powerful facility for a variety of
applications. In some cases, it provides a facility that is required
for certain applications to work in the Internet environment. In
other cases, it provides a more efficient, robust and possibly more
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -