📄 rfc2432.txt
字号:
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Issues:
Consideration may need to be given with respect to the impact of
different frame formats on usable bandwidth.
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.3 Forwarding Latency.
This section presents terminology relating to the characterization of
the forwarding latency of a DUT/SUT in a multicast environment. It
extends the concept of latency presented in RFC 1242.
3.3.1 Multicast Latency. (ML)
Definition:
The set of individual latencies from a single input port on the
DUT or SUT to all tested ports belonging to the destination
multicast group.
Discussion:
This benchmark is based on the RFC 1242 definition of latency.
While it is useful to collect latency between a pair of source and
destination multicast ports, it may be insightful to collect the
same type of measurements across a range of ports supporting that
Group Class.
A variety of statistical exercises can be applied to the set of
latencies measurements.
Measurement units:
Time units with enough precision to reflect a latency measurement.
3.3.2 Min/Max Multicast Latency. (Min/Max ML)
Definition:
The difference between the maximum latency measurement and the
minimum latency measurement from the set of latencies produced by
the Multicast Latency benchmark.
Discussion:
This statistic may yield some insight into how a particular
implementation handles its multicast traffic. This may be useful
to users of multicast synchronization types of applications.
Measurement units:
Time units with enough precision to reflect latency measurement.
Dubray Informational [Page 9]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
3.4 Overhead
This section presents terminology relating to the characterization of
the overhead delays associated with explicit operations found in
multicast environments.
3.4.1 Group Join Delay. (GJD)
Definition:
The time duration it takes a DUT to start forwarding multicast
packets from the time a successful IGMP group membership report
has been issued to the DUT.
Discussion:
Many factors can contribute to different results, such as the
number or type of multicast-related protocols configured on the
device under test. Other factors are physical topology and "tree"
configuration.
Because of the number of variables that could impact this metric,
the metric may be a better characterization tool for a device
rather than a basis for comparisons with other devices.
Issues:
A consideration for the related methodology: possible need to
differentiate a specifically-forwarded multicast frame from those
sprayed by protocols implementing a flooding tactic to solicit
prune feedback.
While this metric attempts to identify a simple delay, the
underlying and contributing delay components (e.g., propagation
delay, frame processing delay, etc.) make this a less than simple
measurement. The corresponding methodology will need to consider
this and similar factors to ensure a consistent and precise metric
result.
Measurement units:
Microseconds.
3.4.2 Group Leave Delay. (GLD)
Definition:
The time duration it takes a DUT to cease forwarding multicast
packets after a corresponding IGMP "Leave Group" message has been
successfully offered to the DUT.
Dubray Informational [Page 10]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Discussion:
While it is important to understand how quickly a device can
process multicast frames; it may be beneficial to understand how
quickly that same device can stop the process as well.
Because of the number of variables that could impact this metric,
the metric may be a better characterization tool for a device
rather than a basis for comparisons with other devices.
Measurement units:
Microseconds.
Issues:
The Methodology may need to consider protocol-specific timeout
values.
While this metric attempts to identify a simple delay, the
underlying and contributing delay components (e.g., propagation
delay, frame processing delay, etc.) make this a less than simple
measurement. Moreover, the cessation of traffic is a rather
unobservable event (i.e., at what point is the multicast forwarded
considered stopped on the DUT interface processing the Leave?).
The corresponding methodology will need to consider this and
similar factors to ensure a consistent and precise metric result.
3.5 Capacity
This section offers terms relating to the identification of multicast
group limits of a DUT/SUT.
3.5.1 Multicast Group Capacity. (MGC)
Definition:
The maximum number of multicast groups a SUT/DUT can support while
maintaining the ability to forward multicast frames to all
multicast groups registered to that SUT/DUT.
Discussion:
Measurement units:
Multicast groups.
Issues:
The related methodology may have to consider the impact of
multicast sources per group on the ability of a SUT/DUT to "scale
up" the number of supportable multicast groups.
Dubray Informational [Page 11]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
3.6 Interaction
Network forwarding devices are generally required to provide more
functionality than than the forwarding of traffic. Moreover, network
forwarding devices may be asked to provide those functions in a
variety of environments. This section offers terms to assist in the
charaterization of DUT/SUT behavior in consideration of potentially
interacting factors.
3.6.1 Burdened Response.
Definition:
A measured response collected from a DUT/SUT in light of
interacting, or potentially interacting, distinct stimulii.
Discussion:
Many metrics provide a one dimensional view into an operating
characteristic of a tested system. For example, the forwarding
rate metric may yield information about the packet processing
ability of a device. Collecting that same metric in view of
another control variable can oftentimes be very insightful. Taking
that same forwarding rate measurement, for instance, while the
device's address table is injected with an additional 50,000
entries may yield a different perspective.
Measurement units:
A burdened response is a type of metric. Metrics of this this
type must follow guidelines when reporting results.
The metric's principal result MUST be reported in conjunction with
the contributing factors.
For example, in reporting a Forwarding Burdened Latency, the
latency measurement should be reported with respect to
corresponding Offered Load and Forwarding Rates.
Issues: A Burdened response may be very illuminating when trying to
characterize a single device or system. Extreme care must be
exercised when attempting to use that characterization as a basis
of comparison with other devices or systems. Test agents must
ensure that the measured response is a function of the controlled
stimulii, and not secondary factors. An example of of such an
interfering factor would be configuration mismatch of a timer
impacting a response process.
Dubray Informational [Page 12]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
3.6.2 Forwarding Burdened Multicast Latency. (FBML)
Definition:
A multicast latency taken from a DUT/SUT in the presence of a
traffic forwarding requirement.
Discussion:
This burdened response metric builds on the Multicast Latency
definition offered in section 3.3.1. It mandates that the DUT be
subjected to an additional measure of traffic not required by the
non-burdened metric.
This metric attempts to provide a means by which to evaluate how
traffic load may or may not impact a device's or system's packet
processing delay.
Measurement units:
Time units with enough precision to reflect the latencies
measurements.
Latency measurements MUST be reported with the corresponding
sustained Forwarding Rate and associated Offered Load.
3.6.3 Forwarding Burdened Group Join Delay. (FBGJD)
Definition:
A multicast Group Join Delay taken from a DUT in the presence of a
traffic forwarding requirement.
Discussion:
This burdened response metric builds on the Group Join Delay
definition offered in section 3.4.1. It mandates that the DUT be
subjected to an additional measure of traffic not required by the
non-burdened metric.
Many factors can contribute to different results, such as the
number or type of multicast-related protocols configured on the
device under test. Other factors could be physical topology or the
logical multicast "tree" configuration.
Because of the number of variables that could impact this metric,
the metric may be a better characterization tool for a device
rather than a basis for comparisons with other devices.
Measurement units:
Time units with enough precision to reflect the delay
measurements.
Dubray Informational [Page 13]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Delay measurements MUST be reported with the corresponding
sustained Forwarding Rate and associated Offered Load.
Issues:
While this metric attempts to identify a simple delay, the
underlying and contributing delay components (e.g., propagation
delay, frame processing delay, etc.) make this a less than simple
measurement. The corresponding methodology will need to consider
this and similar factors to ensure a consistent and precise metric
result.
4. Security Considerations
This document addresses metrics and terminology relating to the
performance benchmarking of IP Multicast forwarding devices. The
information contained in this document does not impact the security
of the Internet.
Methodologies regarding the collection of the metrics described
within this document may need to cite security considerations. This
document does not address methodological issues.
5. Acknowledgments
The IETF BMWG participants have made several comments and suggestions
regarding this work. Particular thanks goes to Harald Alvestrand,
Scott Bradner, Brad Cain, Eric Crawley, Bob Mandeville, David Newman,
Shuching Sheih, Dave Thaler, Chuck Winter, Zhaohui Zhang, and John
Galgay for their insightful review and assistance.
Dubray Informational [Page 14]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
6. References
[Br91] Bradner, S., "Benchmarking Terminology for Network
Interconnection Devices", RFC 1242, July 1991.
[Br96] Bradner, S., and J. McQuaid, "Benchmarking Methodology for
Network Interconnect Devices", RFC 1944, May 1996.
[Hu95] Huitema, C. "Routing in the Internet." Prentice-Hall, 1995.
[Se98] Semeria, C. and Maufer, T. "Introduction to IP Multicast
Routing." http://www.3com.com/nsc/501303.html 3Com Corp.,
1998.
[Ma98] Mandeville, R., "Benchmarking Terminology for LAN Switching
Devices", RFC 2285, February 1998.
[Mt98] Maufer, T. "Deploying IP Multicast in the Enterprise."
Prentice-Hall, 1998.
7. Author's Address
Kevin Dubray
IronBridge Networks
55 Hayden Avenue
Lexington, MA 02421
USA
Phone: 781 372 8118
EMail: kdubray@ironbridgenetworks.com
Dubray Informational [Page 15]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
8. Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Dubray Informational [Page 16]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -