📄 rfc2432.txt
字号:
Network Working Group K. Dubray
Request for Comments: 2432 IronBridge Networks
Category: Informational October 1998
Terminology for IP Multicast Benchmarking
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
The purpose of this document is to define terminology specific to the
benchmarking of multicast IP forwarding devices. It builds upon the
tenets set forth in RFC 1242, RFC 2285, and other IETF Benchmarking
Methodology Working Group (BMWG) efforts. This document seeks to
extend these efforts to the multicast paradigm.
The BMWG produces two major classes of documents: Benchmarking
Terminology documents and Benchmarking Methodology documents. The
Terminology documents present the benchmarks and other related terms.
The Methodology documents define the procedures required to collect
the benchmarks cited in the corresponding Terminology documents.
1. Introduction
Network forwarding devices are being required to take a single frame
and support delivery to a number of destinations having membership to
a particular group. As such, multicast support may place a different
burden on the resources of these network forwarding devices than with
unicast or broadcast traffic types.
Such burdens may not be readily apparent at first glance - the IP
multicast packet's Class D address may be the only noticeable
difference from an IP unicast packet. However, there are many
factors that may impact the treatment of IP multicast packets.
Consider how a device's architecture may impact the handling of a
multicast frame. For example, is the multicast packet subject to the
same processing as its unicast analog? Or is the multicast packet
treated as an exeception and processed on a different data path?
Dubray Informational [Page 1]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Consider, too, how a shared memory architecture may demonstrate a
different performance profile than an architecture which explicitly
passes each individual packet between the processing entities.
In addition to forwarding device architecture, there are other
factors that may impact a device's or system's multicast related
performance. Protocol requirements may demand that routers and
switches consider destination and source addressing in its multicast
forwarding decisions. Capturing multicast source/destination
addressing information may impact forwarding table size and lengthen
lookups. Topological factors such as the degree of packet
replication, the number of multicast groups being supported by the
system, or the placement of multicast packets in unicast wrappers to
span non-multicast network paths may all potentially affect a
system's multicast related performance. For an overall understanding
of IP multicasting, the reader is directed to [Se98], [Hu95], and
[Mt98].
By clearly identifying IP multicast benchmarks and related
terminology in this document, it is hoped that detailed methodologies
can be generated in subsequent documents. Taken in tandem, these two
efforts endeavor to assist the clinical, empirical, and consistent
characterization of certain aspects of multicast technologies and
their individual implementations. Understanding the operational
profile of multicast forwarding devices may assist the network
designer to better deploy multicast in his or her networking
environment.
Moreover, this document focuses on one source to many destinations
profiling. Elements of this document may require extension when
considering multiple source to multiple destination IP multicast
communication.
2. Definition Format
This section cites the template suggested by RFC 1242 in the
specification of a term to be defined.
Term to be defined.
Definition:
The specific definition for the term.
Discussion:
A brief discussion of the term, its application, or other
information that would build understanding.
Dubray Informational [Page 2]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Measurement units:
Units used to record measurements of this term, if applicable.
[Issues:]
List of issues or conditions that affect this term. This field can
present items the may impact the term's related methodology or
otherwise restrict its measurement procedures. This field is
optional in this document.
[See Also:]
List of other terms that are relevant to the discussion of this
term. This field is optional in this document.
2.1 Existing Terminology
This document draws on existing terminology defined in other BMWG
work. Examples include, but are not limited to:
Throughput [RFC 1242, section 3.17]
Latency [RFC 1242, section 3.8]
Constant Load [RFC 1242, section 3.4]
Frame Loss Rate [RFC 1242, section 3.6]
Overhead behavior [RFC 1242, section 3.11]
Forwarding Rates [RFC 2285, section 3.6]
Loads [RFC 2285, section 3.5]
Device Under Test (DUT) [RFC 2285, section 3.1.1]
System Under Test (SUT) [RFC 2285, section 3.1.2]
Note: "DUT/SUT" refers to a metric that may be applicable to a DUT or
SUT.
3. Table of Defined Terms
3.1 General Nomenclature
3.1.1 Traffic Class. (TC)
3.1.2 Group Class. (GC)
3.1.3 Service Class. (SC)
3.2 Forwarding and Throughput
3.2.1 Mixed Class Throughput (MCT).
3.2.2 Scaled Group Forwarding Matrix (SGFM).
3.2.3 Aggregated Multicast Throughput (AMT)
3.2.4 Encapsulation Throughput (ET)
3.2.5 Decapsulation Throughput (DT)
3.2.6 Re-encapsulation Throughput (RET)
Dubray Informational [Page 3]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
3.3 Forwarding Latency
3.3.1 Multicast Latency (ML)
3.3.2 Min/Max Multicast Latency (Min/Max ML)
3.4 Overhead
3.4.1 Group Join Delay. (GJD)
3.4.2 Group Leave Delay. (GLD)
3.5 Capacity
3.5.1 Multicast Group Capacity. (MGC)
3.6 Interaction
3.6.1 Burdened Response
3.6.2 Forwarding Burdened Multicast Latency (FBML)
3.6.3 Forwarding Burdened Join Delay (FBJD)
3.1 General Nomenclature
This section will present general terminology to be used in this and
other documents.
3.1.1 Traffic Class. (TC)
Definition:
An equivalence class of packets comprising one or more data
streams.
Discussion:
In the scope of this document, Traffic Class will be considered a
logical identifier used to discriminate between a set or sets of
packets offered the DUT.
For example, one Traffic Class may identify a set of unicast
packets offered to the DUT. Another Traffic Class may
differentiate the multicast packets destined to multicast group X.
Yet another Class may distinguish the set of multicast packets
destined to multicast group Y.
Unless otherwise qualified, the usage of the word "Class" in this
document will refer simply to a Traffic Class.
Measurement units:
Not applicable.
Dubray Informational [Page 4]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
3.1.2 Group Class. (GC)
Definition:
A specific type of Traffic Class where the packets comprising the
Class are destined to a particular multicast group.
Discussion:
Measurement units:
Not applicable.
3.1.3 Service Class. (SC)
Definition:
A specific type of Traffic Class where the packets comprising the
Class require particular treatment or treatments by the network
forwarding devices along the path to the packets' destination(s).
Discussion:
Measurement units:
Not applicable.
3.2 Forwarding and Throughput.
This section presents terminology related to the characterization of
the packet forwarding ability of a DUT/SUT in a multicast
environment. Some metrics extend the concept of throughput presented
in RFC 1242. The notion of Forwarding Rate is cited in RFC 2285.
3.2.1 Mixed Class Throughput (MCT).
Definition:
The maximum rate at which none of the offered frames, comprised
from a unicast Class and a multicast Class, to be forwarded are
dropped by the device across a fixed number of ports.
Discussion:
Often times, throughput is collected on a homogenous traffic class
- the offered load to the DUT is either singularly unicast or
singularly multicast. In most networking environments, the
traffic mix is seldom so uniformly distributed.
Based on the RFC 1242 definition for throughput, the Mixed Class
Throughput benchmark attempts to characterize the DUT's ability to
process both unicast and multicast frames in the same aggregated
traffic stream.
Dubray Informational [Page 5]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Measurement units:
Frames per second
Issues:
Related methodology may have to address the ratio of unicast
packets to multicast packets.
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.2.2 Scaled Group Forwarding Matrix (SGFM).
Definition:
A table that demonstrates Forwarding Rate as a function of tested
multicast groups for a fixed number of tested DUT/SUT ports.
Discussion:
A desirable attribute of many Internet mechanisms is the ability
to "scale." This benchmark seeks to demonstrate the ability of a
SUT to forward as the number of multicast groups is scaled
upwards.
Measurement units:
Packets per second, with corresponding tested multicast group and
port configurations.
Issues:
The corresponding methodology may have to reflect the impact that
the pairing (source, group) has on many multicast routing
protocols.
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.2.3 Aggregated Multicast Throughput (AMT)
Definition:
The maximum rate at which none of the offered frames to be
forwarded through N destination interfaces of the same multicast
group are dropped.
Discussion:
Another "scaling" type of exercise, designed to identify the
DUT/SUT's ability to handle traffic as a function of the multicast
destination ports it is required to support.
Dubray Informational [Page 6]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Measurement units:
The ordered pair (N,t) where,
N = the number of destination ports of the multicast group.
t = the throughput, in frames per second, relative to the
source stream.
Issues:
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.2.4 Encapsulation Throughput (ET)
Definition:
The maximum rate at which frames offered a DUT are encapsulated
and correctly forwarded by the DUT without loss.
Discussion:
A popular technique in presenting a frame to a device that may not
support a protocol feature is to encapsulate, or tunnel, the
packet containing the unsupported feature in a format that is
supported by that device.
More specifically, encapsulation refers to the act of taking a
frame or part of a frame and embedding it as a payload of another
frame. This benchmark attempts to characterize the overhead
behavior associated with that translational process.
Measurement units:
Frames per second.
Issues:
Consideration may need to be given with respect to the impact of
different frame formats on usable bandwidth.
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.2.5 Decapsulation Throughput (DT)
Definition:
The maximum rate at which frames offered a DUT are decapsulated
and correctly forwarded by the DUT without loss.
Dubray Informational [Page 7]
RFC 2432 Terminology for IP Multicast Benchmarking October 1998
Discussion:
A popular technique in presenting a frame to a device that may not
support a protocol feature is to encapsulate, or tunnel, the
packet containing the unsupported feature in a format that is
supported by that device. At some point, the frame may be required
to be returned its orginal format from its encapsulation wrapper
for use by the frame's next destination.
More specifically, decapsulation refers to the act of taking a
frame or part of a frame embedded as a payload of another frame
and returning it to the payload's appropriate format. This
benchmark attempts to characterize the overhead behavior
associated with that translational process.
Measurement units:
Frames per second.
Issues:
Consideration may need to be given with respect to the impact of
different frame formats on usable bandwidth.
Since frame size can sometimes be a factor in frame forwarding
benchmarks, the corresponding methodology for this metric will
need to consider frame size distribution(s).
3.2.6 Re-encapsulation Throughput (RET)
Definition:
The maximum rate at which frames of one encapsulated format
offered a DUT are converted to another encapsulated format and
correctly forwarded by the DUT without loss.
Discussion:
A popular technique in presenting a frame to a device that may not
support a protocol feature is to encapsulate, or tunnel, the
packet containing the unsupported feature in a format that is
supported by that device. At some point, the frame may be required
to be converted from one encapsulation format to another
encapsulation format.
More specifically, re-encapsulation refers to the act of taking an
encapsulated payload of one format and replacing it with another
encapsulated format - all the while preserving the original
payload's contents. This benchmark attempts to characterize the
overhead behavior associated with that translational process.
Measurement units:
Frames per second.
Dubray Informational [Page 8]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -