📄 rfc1077.txt
字号:
Gigabit Working Group [Page 5]
RFC 1077 November 1988
Wide-Area Distributed Data/Knowledge Base Management Systems
Computer-stored data, information, and knowledge is distributed
around the country for a variety of reasons. The ability to
perform complex queries, updates, and report generation as though
many large databases are one system would be extremely powerful,
yet requires low-delay, high-bandwidth communication for
interactive use. The Corporation for National Research
Initiatives (NRI) has promoted the notion of a National Knowledge
base with these characteristics. In particular, an attractive
approach is to cache views at the user sites, or close by to allow
efficient repeated queries and multi-relation processing for
relations on different nodes. However, with caching, a processing
activity may incur a miss in the midst of a query or update,
causing it to be delayed by the time required to retrieve the
missing relation or portion of relation. To minimize the overhead
for cache directories, both at the server and client sites, the
unit of caching should be large---say a megabyte or more. In
addition, to maintain consistency at the caching client sites,
server sites need to multicast invalidations and/or updates.
Communication requirements are further increased by replication of
the data. The critical parameter is latency for cache misses and
consistency operations. Taking the distance between sites to be
on average 1/4 the diameter of the country, a one Gbit/s data rate
is required to reduce the transmission time to be roughly the same
as the propagation delay, namely around 8 milliseconds for this
size of unit. Note that this application is supporting far more
sophisticated queries and updates than normally associated with
transaction processing, thus requiring larger amount of data to be
transferred.
2.2. Types of Traffic and Communications Modes
Different types of traffic may impose different constraints in terms
of throughput, delay, delay dispersion, reliability and sequenced
delivery. Table 1 summarizes some of the main characteristics of
several different types of traffic.
Gigabit Working Group [Page 6]
RFC 1077 November 1988
Table 1: Communication Traffic Requirements
+------------------------+-------------+-------------+-------------+
| | | | Error-free |
| Traffic | Delay | Throughput | Sequenced |
| Type | Requirement | Requirement | Delivery |
+------------------------+-------------+-------------+-------------+
| Interactive Simulation | Low |Moderate-High| No |
+------------------------+-------------+-------------+-------------+
| Network Monitoring | Moderate | Low | No |
+------------------------+-------------+-------------+-------------+
| Virtual Terminal | Low | Low | Yes |
+------------------------+-------------+-------------+-------------+
| Bulk Transfer | High | High | Yes |
+------------------------+-------------+-------------+-------------+
| Message | Moderate | Moderate | Yes |
+------------------------+-------------+-------------+-------------+
| Voice |Low, constant| Moderate | No |
+------------------------+-------------+-------------+-------------+
| Video |Low, constant| High | No |
+------------------------+-------------+-------------+-------------+
| Facsimile | Moderate | High | No |
+------------------------+-------------+-------------+-------------+
| Image Transfer | Variable | High | No |
+------------------------+-------------+-------------+-------------+
| Distributed Computing | Low | Variable | Yes |
+------------------------+-------------+-------------+-------------+
| Network Control | Moderate | Low | Yes |
+------------------------+-------------+-------------+-------------+
The topology among users can be of three types: point-to-point (one-
to-one connectivity), multicast (one sender and multiple receivers),
and conferencing (multiple senders and multiple receivers). There
are three types of transfers that can take place among users. They
are connection-oriented network service, connectionless network
service, and stream or synchronous traffic. Connection and
connectionless services are asynchronous. A connection-oriented
service assumes and provides for relationships among the multiple
packets sent over the connection (e.g., to a common destination)
while connectionless service assumes each packet is a complete and
separate entity unto itself. For stream or synchronous service a
reservation scheme is used to set up and guarantee a constant and
steady amount of bandwidth between any two subscribers.
Gigabit Working Group [Page 7]
RFC 1077 November 1988
2.3. Network Backbone
The GB needs to be of high bandwidth to support a large population of
users, and additionally to provide high-speed connectivity among
certain subscribers who may need such capability (e.g., between two
supercomputers). These users may access the GN from local area
networks (LANs) directly connected to the backbone or via high-speed
intermediate regional networks. The backbone must also minimize
end-to-end delay to support highly interactive high-speed
(supercomputer) activities.
It is important that the LANs that will be connected to the GN be
permitted data rates independent of the data rates of the GB. LAN
speeds should be allowed to change without affecting the GB, and the
GB speeds should be allowed to change without affecting the LANs. In
this way, development of the technology for LANs and the GB can
proceed independently.
Access rate requirements to the GB and the GN will vary depending on
user requirements and local environments. The users may require
access rates ranging from multi-kbit/s in the case of terminals or
personal computers connected by modems up to multi-Mbit/s and beyond
for powerful workstations up to the Gbit/s range for high-speed
computing and data resources.
2.4. Directory Services
Directory services similar to those found in CCITT X.500/ISO DIS 9594
need to be provided. These include mapping user names to electronic
mail addresses, distribution lists, support for authorization
checking, access control, and public key encryption schemes,
multimedia mail capabilities, and the ability to keep track of mobile
users (those who move from place to place and host computer to host
computer). The directory services may also list facilities available
to users via the network. Some examples are databases,
supercomputing or other special-purpose applications, and on-line
help or telephone hotlines.
The services provided by X.500 may require some extension for GN.
For example, there is no provision for multilevel security, and the
approach taken to authentication must be studied to ensure that it
meets the requirements of GN and its user community.
Gigabit Working Group [Page 8]
RFC 1077 November 1988
2.5. Network Management and Routing
The objective of network management is to ensure that the network
functions smoothly and efficiently, and consists of the following:
accounting, security, performance monitoring, fault isolation and
configuration control.
Accounting ensures that users are properly billed for the services
that the network provides. Accounting enforces a tariff; a tariff
expresses a usage policy. The network need only keep track of those
items addressed by the tariff, such as allocated bandwidth, number of
packets sent, number of ports used, etc. Another type of accounting
may need to be supported by the network to support resource sharing,
namely accounting analogous to telephone "900" numbers. This
accounting performed by the network on behalf of resource providers
and consumers is a pragmatic solution to the problem of getting the
users and consumers into a financial relationship with each other
which has stymied previous attempts to achieve widespread use of
specialized resources.
Performance monitoring is needed so that the managers can tell how
the network is performing and take the necessary actions to keep its
performance at a level that will provide users with satisfactory
service. Fault isolation using technical control mechanisms is
needed for network maintenance. Configuration management allows the
network to function efficiently.
Several new types of routing will be required by GN. In addition to
true type-of-service, needed to support diverse distributed
applications, real-time applications, interactive applications, and
bulk data transfer, there will be need for traffic controls to
enforce various routing policies. For example, policy may dictate
that traffic from certain users, applications, or hosts may not be
permitted to traverse certain segments of the network.
Alternatively, traffic controls may be used to promote fairness; that
is, to make sure that busy link or network segment isn't dominated by
a particular source or destination. The ability of applications to
reserve network bandwidth in advance of its use, and the use of
strategies such as soft connections, will also require development of
new routing algorithms.
2.6. Network Security Requirements
Security is a critical factor within the GN and one of those features
that are difficult to provide. It is envisioned that both
Gigabit Working Group [Page 9]
RFC 1077 November 1988
unclassified and classified traffic will utilize the GN, so
protection mechanisms must be an integral part of the network access
strategy. Features such as authentication, integrity,
confidentiality, access control, and nonrepudiation are essential to
provide trusted and secure communication services for network users.
A subscriber must have assurance that the person or system he is
exchanging information with is indeed who he says he is.
Authentication provides this assurance by verifying that the claimed
source of a query request, control command, response, etc., is the
actual source. Integrity assures that the subscriber's information
(such as requests, commands, data, responses, etc.) is not changed,
intentionally or unintentionally, while in transit or by replays of
earlier traffic. Unauthorized users (e.g., intruders or network
viruses) would be denied use of GN assets through access control
mechanisms which verify that the authenticated source is authorized
to receive the requested information or to initiate the specified
command. In addition, nonrepudiation services can be offered to
assure a third party that the transmitted information has not been
altered. And finally, confidentiality will ensure that the contents
of a message are not divulged to unauthorized individuals.
Subscribers can decide, based upon their own security needs and
particular activities, which of these services are necessary at a
given time.
3. Critical Research Issues
In the section above, we discussed the goals of a research program in
gigabit networking; namely to provide the technology base for a
network that will allow gigabit service to be provided in an
effective way. In this section, we discuss those issues which we
feel are critical to address in a research program to achieve such
goals.
3.1. General Architectural Issues
In the last generation of networks, it was assumed that bandwidth was
the scarce resource and the design of the switch was dictated by the
need to manage and allocate the bandwidth effectively. The most
basic change in the next generation network is that the speeds of the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -