📄 rfc1271.txt
字号:
Network Working Group S. Waldbusser
Request for Comments: 1271 Carnegie Mellon University
November 1991
Remote Network Monitoring Management Information Base
Status of this Memo
This memo is an extension to the SNMP MIB. This RFC specifies an IAB
standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the
current edition of the "IAB Official Protocol Standards" for the
standardization state and status of this protocol. Distribution of
this memo is unlimited.
Table of Contents
1. Abstract .............................................. 2
2. The Network Management Framework....................... 2
3. Objects ............................................... 2
3.1 Format of Definitions ................................ 3
4. Overview .............................................. 3
4.1 Remote Network Management Goals ...................... 3
4.2 Textual Conventions .................................. 5
4.3 Structure of MIB ..................................... 5
4.3.1 The Statistics Group ............................... 6
4.3.2 The History Group .................................. 6
4.3.3 The Alarm Group .................................... 6
4.3.4 The Host Group ..................................... 6
4.3.5 The HostTopN Group ................................. 6
4.3.6 The Matrix Group ................................... 7
4.3.7 The Filter Group ................................... 7
4.3.8 The Packet Capture Group ........................... 7
4.3.9 The Event Group .................................... 7
5. Control of Remote Network Monitoring Devices .......... 7
5.1 Resource Sharing Among Multiple Management Stations .. 8
5.2 Row Addition Among Multiple Management Stations ...... 9
6. Definitions ........................................... 10
7. Acknowledgments ....................................... 80
8. References ............................................ 80
Security Considerations................................... 81
Author's Address.......................................... 81
Remote Network Monitoring Working Group [Page 1]
RFC 1271 Remote Network Monitoring MIB November 1991
1. Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in TCP/IP-based internets.
In particular, it defines objects for managing remote network
monitoring devices.
2. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
RFC 1155 which defines the SMI, the mechanisms used for describing
and naming objects for the purpose of management. RFC 1212
defines a more concise description mechanism, which is wholly
consistent with the SMI.
RFC 1156 which defines MIB-I, the core set of managed objects for
the Internet suite of protocols. RFC 1213, defines MIB-II, an
evolution of MIB-I based on implementation experience and new
operational requirements.
RFC 1157 which defines the SNMP, the protocol used for network
access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
3. Objects
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the subset of Abstract Syntax Notation One (ASN.1) [7]
defined in the SMI. In particular, each object has a name, a syntax,
and an encoding. The name is an object identifier, an
administratively assigned name, which specifies an object type. The
object type together with an object instance serves to uniquely
identify a specific instantiation of the object. For human
convenience, we often use a textual string, termed the OBJECT
DESCRIPTOR, to also refer to the object type.
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1 language is used for
this purpose. However, the SMI [3] purposely restricts the ASN.1
constructs which may be used. These restrictions are explicitly made
for simplicity.
The encoding of an object type is simply how that object type
Remote Network Monitoring Working Group [Page 2]
RFC 1271 Remote Network Monitoring MIB November 1991
is represented using the object type's syntax. Implicitly
tied to the notion of an object type's syntax and encoding is
how the object type is represented when being transmitted on
the network.
The SMI specifies the use of the basic encoding rules of ASN.1 [8],
subject to the additional requirements imposed by the SNMP.
3.1. Format of Definitions
Section 6 contains the specification of all object types
contained in this MIB module. The object types are defined
using the conventions defined in the SMI, as amended by the
extensions specified in [9,10].
4. Overview
Remote network monitoring devices are instruments that exist for the
purpose of managing a network. Often these remote probes are
stand-alone devices and devote significant internal resources for the
sole purpose of managing a network. An organization may employ many
of these devices, one per network segment, to manage its internet. In
addition, these devices may be used for a network management service
provider to access a client network, often geographically remote.
While many of the objects in this document are suitable for the
management of any type of network, there are some which are specific
to managing Ethernet networks. The design of this MIB allows similar
objects to be defined for other network types. It is intended that
future versions of this document will define extensions for other
network types such as Token Ring and FDDI.
4.1. Remote Network Management Goals
o Offline Operation
There are sometimes conditions when a management
station will not be in constant contact with its
remote monitoring devices. This is sometimes by
design in an attempt to lower communications costs
(especially when communicating over a WAN or
dialup link), or by accident as network failures
affect the communications between the management
station and the probe.
For this reason, this MIB allows a probe to be
configured to perform diagnostics and to collect
statistics continuously, even when communication with
the management station may not be possible or
Remote Network Monitoring Working Group [Page 3]
RFC 1271 Remote Network Monitoring MIB November 1991
efficient. The probe may then attempt to notify
the management station when an exceptional condition
occurs. Thus, even in circumstances where
communication between management station and probe is
not continuous, fault, performance, and configuration
information may be continuously accumulated and
communicated to the management station conveniently
and efficiently.
o Preemptive Monitoring
Given the resources available on the monitor, it
is potentially helpful for it continuously to run
diagnostics and to log network performance. The
monitor is always available at the onset of any
failure. It can notify the management station of the
failure and can store historical statistical
information about the failure. This historical
information can be played back by the management
station in an attempt to perform further diagnosis
into the cause of the problem.
o Problem Detection and Reporting
The monitor can be configured to recognize
conditions, most notably error conditions, and
continuously to check for them. When one of these
conditions occurs, the event may be logged, and
management stations may be notified in a number of
ways.
o Value Added Data
Because a remote monitoring device represents a
network resource dedicated exclusively to network
management functions, and because it is located
directly on the monitored portion of the network, the
remote network monitoring device has the opportunity
to add significant value to the data it collects.
For instance, by highlighting those hosts on the
network that generate the most traffic or errors, the
probe can give the management station precisely the
information it needs to solve a class of problems.
o Multiple Managers
An organization may have multiple management stations
for different units of the organization, for different
functions (e.g. engineering and operations), and in an
attempt to provide disaster recovery. Because
environments with multiple management stations are
common, the remote network monitoring device has to
Remote Network Monitoring Working Group [Page 4]
RFC 1271 Remote Network Monitoring MIB November 1991
deal with more than own management station,
potentially using its resources concurrently.
4.2. Textual Conventions
Two new data types are introduced as a textual convention in this MIB
document. These textual conventions enhance the readability of the
specification and can ease comparison with other specifications if
appropriate. It should be noted that the introduction of the these
textual conventions has no effect on either the syntax nor the
semantics of any managed objects. The use of these is merely an
artifact of the explanatory method used. Objects defined in terms of
one of these methods are always encoded by means of the rules that
define the primitive type. Hence, no changes to the SMI or the SNMP
are necessary to accommodate these textual conventions which are
adopted merely for the convenience of readers and writers in pursuit
of the elusive goal of clear, concise, and unambiguous MIB documents.
The new data types are: OwnerString and EntryStatus.
4.3. Structure of MIB
The objects are arranged into the following groups:
- statistics
- history
- alarm
- host
- hostTopN
- matrix
- filter
- packet capture
- event
These groups are the basic unit of conformance. If a remote
monitoring device implements a group, then it must implement all
objects in that group. For example, a managed agent that implements
the host group must implement the hostControlTable, the hostTable and
the hostTimeTable.
Remote Network Monitoring Working Group [Page 5]
RFC 1271 Remote Network Monitoring MIB November 1991
All groups in this MIB are optional. Implementations of this MIB
must also implement the system and interfaces group of MIB-II [6].
MIB-II may also mandate the implementation of additional groups.
These groups are defined to provide a means of assigning object
identifiers, and to provide a method for managed agents to know which
objects they must implement.
4.3.1. The Statistics Group
The statistics group contains statistics measured by the probe for
each monitored interface on this device. This group currently
consists of the etherStatsTable but in the future will contain tables
for other media types including Token Ring and FDDI.
4.3.2. The History Group
The history group records periodic statistical samples from a network
and stores them for later retrieval. This group currently consists
of the historyControlTable and the etherHistoryTable. In future
versions of the MIB, this group may contain tables for other media
types including Token Ring and FDDI.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -