📄 rfc2871.txt
字号:
Some of the possible protocols for the front end are:
Service Location Protocol (SLP): SLP has been designed to fit
exactly this kind of function. SLP is ideal for locating servers
described by a set of attributes. In this case, the server is a
gateway (or next hop towards the gateway), and the attributes
are the end user policy. The end user is an SLP UA, and the LS
is an SLP DA. The Service Query is used to ask for a gateway
with a particular set of attributes.
Open Settlements Protocol (OSP): OSP [11] is a client server
protocol. It allows the client to query a server with a phone
number, and get back the address of a next hop, along with
authorization tokens to use for the call. In this case, the
server can be an LS. The routing table it uses to respond to OSP
queries is the one built up using TRIP.
Lightweight Directory Access Protocol (LDAP): LDAP is used for
accessing distributed databases. Since the LS server contains a
database, LDAP could be used to query it.
Web Page: The LS could have a web front end. Users could enter
queries into a form, and the matching gateways returned in the
response. This access mechanism is more appropriate for human
access, however. A signaling server would not likely access the
front end through a web page.
TRIP: The protocols discussed above are all of the query-response
type. There is no reason why the LS access must be of this form.
It is perfectly acceptable for the access to be through complete
database synchronization, so that the entity accessing the LS
database effectively has a full copy of it. If this approach
were desired, TRIP itself is an appropriate mechanism. This
approach has obvious drawbacks, but nothing precludes it from
being done.
11 Number Translations
The model for TRIP is that of many gateways, each of which is willing
to terminate calls towards some set of phone numbers. Often, this set
will be based on the set of telephone numbers which are in close
geographic proximity to the gateway. For example, a gateway in New
York might be willing to terminate calls to the 212 and 718 area
codes. Of course, it is up to the administrator to decide on what
phone numbers the gateway is willing to call.
Rosenberg & Schulzrinne Informational [Page 21]
RFC 2871 TRIP Framework June 2000
However, certain phone numbers don't represent GSTN terminals at all,
but rather they represent services or virtual addresses. An example
of such numbers are freephone and LNP numbers. In the telephone
network, these are actually mapped to routable telephone numbers,
often based on complex formulae. A classic example is time-of-day-
based translation.
While nothing prevents a gateway from advertising reachability to
these kinds of numbers, this usage is highly discouraged. Since TRIP
is a routing protocol, the routes it propagates should be to routable
numbers, not to names which are eventually translated to routable
numbers. Numerous problems arise when TRIP is used to propagate
routes to these numbers:
o Often, these numbers have only local significance. Calls to a
freephone number made from New York might terminate in a New
York office of a company, while calls made from California
will terminate in a California branch. If this freephone
number is injected into TRIP by a gateway in New York, it
could be propagated to other LS's with end users in
California. If this route is used, calls may be not be routed
as intended.
o The call signaling paths might be very suboptimal. Consider a
gateway in New York that advertises a ported number that maps
to a phone in California. This number is propagated by TRIP,
eventually being learned by an LS with end users in
California. When one of them dials this number, the call is
routed over the IP network towards New York, where it hits the
gateway, and then is routed over the GSTN back to California.
This is a waste of resources. Had the ported number been
translated before the gateway routing function was invoked, a
California gateway could have been accessed directly.
As a result, it is more efficient to perform translations of these
special numbers before the LS routing databases are accessed. How
this translation is done is outside the scope of TRIP. It can be
accomplished by the calling device before making the call, or by a
signaling server before it accesses the LS database.
12 Security Considerations
Security is an important component in TRIP. The TRIP model assumes a
level of trust between peer LS's that exchange information. This
information is used to propagate information which determines where
calls will be routed. If this information were incorrect, it could
cause complete misrouting of calls. This enables a significant denial
of service attack. The information might also be propagated to other
Rosenberg & Schulzrinne Informational [Page 22]
RFC 2871 TRIP Framework June 2000
ITADs, causing the problem to potentially spread. As a result, mutual
authentication of peer LS's is critical. Furthermore, message
integrity is required.
TRIP messages may contain potentially sensitive information. They
represent the routing capabilities of an ITAD. Such information might
be used by corporate competitors to determine the network topology
and capacity of the ITAD. As a result, encryption of messages is also
supported in TRIP.
As routing objects can be passed via one LS to another, there is a
need for some sort of end to end authentication as well. However,
aggregation will cause the routing objects to be modified, and
therefore authentication can only take place from the point of last
aggregation to the receiving LS's.
13 Acknowledgments
The authors would like to thank Randy Bush, Mark Foster, Dave Oran,
Hussein Salama, and Matt Squire for their useful comments on this
document.
14 Bibliography
[1] International Telecommunication Union, "Visual telephone systems
and equipment for local area networks which provide a non-
guaranteed quality of service," Recommendation H.323,
Telecommunication Standardization Sector of ITU, Geneva,
Switzerland, May 1996.
[2] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
"SIP: Session Initiation Protocol", RFC 2543, March 1999.
[3] Arango, M., Dugan, A., Elliott, I., Huitema, C. and S. Pickett,
"Media Gateway Control Protocol (MGCP) Version 1.0", RFC 2705,
October 1999.
[4] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
March 1997.
[5] Simpson, W., "The Point-to-Point Protocol (PPP)," STD 51, RFC
1661, July 1994.
[6] Rekhter Y. and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC
1771, March 1995.
[7] Veizades, J., Guttman, E., Perkins, C. and S. Kaplan, "Service
Location Protocol", RFC 2165, June 1997.
Rosenberg & Schulzrinne Informational [Page 23]
RFC 2871 TRIP Framework June 2000
[8] Yeong, W., Howes, T. and S. Kille, "Lightweight Directory Access
Protocol", RFC 1777, March 1995.
[9] Guttman, E., Perkins, C., Veizades, J. and M. Day, "Service
Location Protocol, Version 2", RFC 2608, June 1999.
[10] Schulzrinne H. and J. Rosenberg, "SIP caller preferences and
callee capabilities", Work in progress.
[11] European Telecommunications Standards Institute (ETSI),
Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON), "Inter-domain pricing, authorization, and
usage exchange," Technical Specification 101 321 version 1.4.2,
ETSI, 1998.
15 Authors' Addresses
Jonathan Rosenberg
dynamicsoft
72 Eagle Rock Avenue
First Floor
East Hanover, NJ 07936
Email: jdrosen@dynamicsoft.com
Henning Schulzrinne
Columbia University
M/S 0401
1214 Amsterdam Ave.
New York, NY 10027-7003
Email: schulzrinne@cs.columbia.edu
Rosenberg & Schulzrinne Informational [Page 24]
RFC 2871 TRIP Framework June 2000
16. Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Rosenberg & Schulzrinne Informational [Page 25]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -