⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2871.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:






Network Working Group                                       J. Rosenberg
Request for Comments: 2871                                   dynamicsoft
Category: Informational                                   H. Schulzrinne
                                                     Columbia University
                                                               June 2000


               A Framework for Telephony Routing over IP

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This document serves as a framework for Telephony Routing over IP
   (TRIP), which supports the discovery and exchange of IP telephony
   gateway routing tables between providers. The document defines the
   problem of telephony routing exchange, and motivates the need for the
   protocol. It presents an architectural framework for TRIP, defines
   terminology, specifies the various protocol elements and their
   functions, overviews the services provided by the protocol, and
   discusses how it fits into the broader context of Internet telephony.

Table of Contents

   1      Introduction ........................................    2
   2      Terminology .........................................    2
   3      Motivation and Problem Definition ...................    4
   4      Related Problems ....................................    6
   5      Relationship with BGP ...............................    7
   6      Example Applications of TRIP ........................    8
   6.1    Clearinghouses ......................................    8
   6.2    Confederations ......................................    9
   6.3    Gateway Wholesalers .................................    9
   7      Architecture ........................................   11
   8      Elements ............................................   12
   8.1    IT Administrative Domain ............................   12
   8.2    Gateway .............................................   13
   8.3    End Users ...........................................   14
   8.4    Location Server .....................................   14
   9      Element Interactions ................................   16



Rosenberg & Schulzrinne      Informational                      [Page 1]

RFC 2871                     TRIP Framework                    June 2000


   9.1    Gateways and Location Servers .......................   16
   9.2    Location Server to Location Server ..................   16
   9.2.1  Nature of Exchanged Information .....................   17
   9.2.2  Quality of Service ..................................   18
   9.2.3  Cost Information ....................................   19
   10     The Front End .......................................   19
   10.1   Front End Customers .................................   19
   10.2   Front End Protocols .................................   20
   11     Number Translations .................................   21
   12     Security Considerations .............................   22
   13     Acknowledgments .....................................   23
   14     Bibliography ........................................   23
   15     Authors' Addresses ..................................   24
   16     Full Copyright Statement ............................   25

1 Introduction

   This document serves as a framework for Telephony Routing over IP
   (TRIP), which supports the discovery and exchange of IP telephony
   gateway routing tables between providers. The document defines the
   problem of telephony routing exchange, and motivates the need for the
   protocol. It presents an architectural framework for TRIP, defines
   terminology, specifies the various protocol elements and their
   functions, overviews the services provided by the protocol, and
   discusses how it fits into the broader context of Internet telephony.

2 Terminology

   We define the following terms. Note that there are other definitions
   for these terms, outside of the context of gateway location. Our
   definitions aren't general, but refer to the specific meaning here:

     Gateway: A device with some sort of circuit switched network
        connectivity and IP connectivity, capable of initiating and
        terminating IP telephony signaling protocols, and capable of
        initiating and terminating telephone network signaling
        protocols.

     End User: The end user is usually (but not necessarily) a human
        being, and is the party who is the ultimate initiator or
        recipient of calls.

     Calling Device: The calling device is a physical entity which has
        IP connectivity. It is under the direction of an end user who
        wishes to place a call. The end user may or may not be directly
        controlling the calling device. If the calling device is a PC,





Rosenberg & Schulzrinne      Informational                      [Page 2]

RFC 2871                     TRIP Framework                    June 2000


        the end user is directly controlling it. If, however, the
        calling device is a telephony gateway, the end user may be
        accessing it through a telephone.

     Gatekeeper: The H.323 gatekeeper element, defined in [1].

     SIP Server: The Session Initiation Protocol proxy or redirect
        server defined in [2].

     Call Agent: The MGCP call agent, defined in [3].

     GSTN: The Global Switched Telephone Network, which is the worldwide
        circuit switched network.

     Signaling Server: A signaling server is an entity which is capable
        of receiving and sending signaling messages for some IP
        telephony signaling protocol, such as H.323 or SIP.  Generally
        speaking, a signaling server is a gatekeeper, SIP server, or
        call agent.

     Location Server (LS): A logical entity with IP connectivity which
        has knowledge of gateways that can be used to terminate calls
        towards the GSTN. The LS is the main entity that participates in
        Telephony Routing over IP. The LS is generally a point of
        contact for end users for completing calls to the telephony
        network. An LS may also be responsible for propagation of
        gateway information to other LS's. An LS may be coresident with
        an H.323 gatekeeper or SIP server, but this is not required.

     Internet Telephony Administrative Domain (ITAD): The set of
        resources (gateways and Location Servers) under the control of a
        single administrative authority. End users are customers of an
        ITAD.

     Provider: The administrator of an ITAD.

     Location Server Policy: The set of rules which dictate how a
        location server processes information it sends and receives via
        TRIP. This includes rules for aggregating, propagating,
        generating, and accepting information.

     End User Policy: Preferences that an end user has about how a call
        towards the GSTN should be routed.

     Peers: Two LS's are peers when they have a persistent association
        between them over which gateway information is exchanged.





Rosenberg & Schulzrinne      Informational                      [Page 3]

RFC 2871                     TRIP Framework                    June 2000


     Internal peers: Peers that both reside within the same ITAD.

     External peers: Peers that reside within different ITADs.

     Originating Location Server: A Location Server which first
        generates a route to a gateway in its ITAD.

     Telephony Routing Information Base (TRIB): The database of gateways
        an LS builds up as a result of participation in TRIP.

3 Motivation and Problem Definition

   As IP telephony gateways grow in terms of numbers and usage, managing
   their operation will become increasingly complex. One of the
   difficult tasks is that of gateway location, also known as gateway
   selection, path selection, gateway discovery, and gateway routing.
   The problem occurs when a calling device (such as a telephony gateway
   or a PC with IP telephony software) on an IP network needs to
   complete a call to a phone number that represents a terminal on a
   circuit switched telephone network. Since the intended target of the
   call resides in a circuit switched network, and the caller is
   initiating the call from an IP host, a telephony gateway must be
   used. The gateway functions as a conversion point for media and
   signaling, converting between the protocols used on the IP network,
   and those used in the circuit switched network.

   The gateway is, in essence, a relaying point for an application layer
   signaling protocol. There may be many gateways which could possibly
   complete the call from the calling device on the IP network to the
   called party on the circuit switched network. Choosing such a gateway
   is a non-trivial process. It is complicated because of the following
   issues:

     Number of Candidate Gateways: It is anticipated that as IP
        telephony becomes widely deployed, the number of telephony
        gateways connecting the Internet to the GSTN will become large.
        Attachment to the GSTN means that the gateway will have
        connectivity to the nearly one billion terminals reachable on
        this network. This means that every gateway could theoretically
        complete a call to any terminal on the GSTN.  As such, the
        number of candidate gateways for completing a call may be very
        large.

     Business Relationships: In reality, the owner of a gateway is
        unlikely to make the gateway available to any user who wishes to
        connect to it. The gateway provides a useful service, and incurs
        cost when completing calls towards the circuit switched network.
        As a result, providers of gateways will, in many cases, wish to



Rosenberg & Schulzrinne      Informational                      [Page 4]

RFC 2871                     TRIP Framework                    June 2000


        charge for use of these gateways. This may restrict usage of the
        gateway to those users who have, in some fashion, an established
        relationship with the gateway provider.

     Provider Policy: In all likelihood, an end user who wishes to make
        use of a gateway service will not compensate the gateway
        provider directly. The end user may have a relationship with an
        IP telephony service provider which acts as an intermediary to
        providers of gateways. The IP telephony service provider may
        have gateways of its own as well. In this case, the IP telephony
        service provider may have policies regarding the usage of
        various gateways from other providers by its customers. These
        policies must figure into the selection process.

     End User Policy: In some cases, the end user may have specific
        requirements regarding the gateway selection. The end user may
        need a specific feature, or have a preference for a certain
        provider. These need to be taken into account as well.

     Capacity: All gateways are not created equal. Some are large,
        capable of supporting hundreds or even thousands of simultaneous
        calls. Others, such as residential gateways, may only support
        one or two calls. The process for selecting gateways should
        allow gateway capacity to play a role. It is particularly
        desirable to support some form of load balancing across gateways
        based on their capacities.

     Protocol and Feature Compatibilities: The calling party may be
        using a specific signaling or media protocol that is not
        supported by all gateways.

   From these issues, it becomes evident that the selection of a gateway
   is driven in large part by the policies of various parties, and by
   the relationships established between these parties. As such, there
   cannot be a global "directory of gateways" in which users look up
   phone numbers. Rather, information on availability of gateways must
   be exchanged by providers, and subject to policy, made available
   locally and then propagated to other providers. This would allow each
   provider to build up its own local database of available gateways -
   such a database being very different for each provider depending on
   policy.

   From this, we can conclude that a protocol is needed between
   administrative domains for exchange of gateway routing information.
   The protocol that provides these functions is Telephony Routing over
   IP (TRIP). TRIP provides a specific set of functions:





⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -