📄 rfc3201.txt
字号:
Network Working Group R. Steinberger
Request for Comments: 3201 Paradyne Networks
Category: Standards Track O. Nicklass
RAD Data Communications Ltd.
January 2002
Definitions of Managed Objects
for Circuit to Interface Translation
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
This memo defines an extension of the Management Information Base
(MIB) for use with network management protocols in TCP/IP-based
internets. In particular, it defines objects for managing the
insertion of interesting Circuit Interfaces into the ifTable. This
is important for circuits that must be used within other MIB modules
which require an ifEntry. It allows for integrated monitoring of
circuits as well as routing to circuits using unaltered, pre-existing
MIB modules.
Table of Contents
1. The SNMP Management Framework ............................... 2
2. Conventions ................................................. 3
3. Overview .................................................... 3
3.1. Circuit Concepts .......................................... 4
3.2. Theory of Operation ....................................... 4
3.2.1. Creation Process ........................................ 4
3.2.2. Destruction Process ..................................... 5
3.2.2.1. Manual Row Destruction ................................ 5
3.2.2.2. Automatic Row Destruction ............................. 5
3.2.3. Modification Process .................................... 5
3.2.4. Persistence of Data ..................................... 5
4. Relation to Other MIB Modules ............................... 6
4.1. Frame Relay DTE MIB ....................................... 6
Steinberger & Nicklass Standards Track [Page 1]
RFC 3201 Circuit to Interface MIB January 2002
4.2. Frame Relay Service MIB ................................... 6
4.3. ATM MIB ................................................... 6
4.4. Interfaces Group MIB ...................................... 6
4.4.1. Interfaces Table (ifTable, ifXtable) .................... 6
4.4.2. Stack Table (ifStackTable) .............................. 9
4.5. Other MIB Modules ......................................... 11
5. Structure of the MIB Module ................................. 11
5.1. ciCircuitTable ............................................ 11
5.2. ciIfMapTable .............................................. 11
6. Object Definitions .......................................... 11
7. Acknowledgments ............................................. 19
8. References .................................................. 19
9. Security Considerations ..................................... 21
10. IANA Considerations ........................................ 21
11. Authors' Addresses ......................................... 22
12. Full Copyright Statement ................................... 23
1. The SNMP Management Framework
The SNMP Management Framework presently consists of five major
components:
o An overall architecture, described in RFC 2571 [1].
o Mechanisms for describing and naming objects and events for the
purpose of management. The first version of this Structure of
Management Information (SMI) is called SMIv1 and described in STD
16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The
second version, called SMIv2, is described in STD 58, RFC 2578
[5], RFC 2579 [6] and RFC 2580 [7].
o Message protocols for transferring management information. The
first version of the SNMP message protocol is called SNMPv1 and
described in STD 15, RFC 1157 [8]. A second version of the SNMP
message protocol, which is not an Internet standards track
protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC
1906 [10]. The third version of the message protocol is called
SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574
[12].
o Protocol operations for accessing management information. The
first set of protocol operations and associated PDU formats is
described in STD 15, RFC 1157 [8]. A second set of protocol
operations and associated PDU formats is described in RFC 1905
[13].
Steinberger & Nicklass Standards Track [Page 2]
RFC 3201 Circuit to Interface MIB January 2002
o A set of fundamental applications described in RFC 2573 [14] and
the view-based access control mechanism described in RFC 2575
[15].
A more detailed introduction to the current SNMP Management Framework
can be found in RFC 2570 [16].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Objects in the MIB are
defined using the mechanisms defined in the SMI.
This memo specifies a MIB module that is compliant to the SMIv2. A
MIB conforming to the SMIv1 can be produced through the appropriate
translations. The resulting translated MIB must be semantically
equivalent, except where objects or events are omitted because no
translation is possible (use of Counter64). Some machine readable
information in SMIv2 will be converted into textual descriptions in
SMIv1 during the translation process. However, this loss of machine
readable information is not considered to change the semantics of the
MIB.
2. Conventions
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when
they appear in this document, are to be interpreted as described in
RFC 2119 [21].
3. Overview
This MIB module addresses the concept of inserting circuits, which
are potentially virtual, into the ifTable. There are multiple
reasons to allow circuits to be added to the ifTable. The most
prevalent of which are the standard routing MIB tables such as the
ipCidrRouteTable (IP-FORWARD-MIB) and the ipNetToMediaTable (IP-MIB)
act on the ifIndex and the RMON MIBs (RMON-MIB and RMON2-MIB as
defined in RFC 2819 [23] and RFC 2021 [19]) require the use of an
ifIndex a DataSource.
There is a further need to potentially monitor or manage a circuit
based on the directional flow of traffic going through it. For
instance, monitoring of protocols passed on a circuit using RMON-II
(RFC 2021 [19]) does not currently capture the direction of the flow.
This MIB module provides the capability to define an interface based
on the specific direction of the flow.
This section provides an overview and background of how to use this
MIB module.
Steinberger & Nicklass Standards Track [Page 3]
RFC 3201 Circuit to Interface MIB January 2002
3.1. Circuit Concepts
There are multiple MIB modules that define circuits. Three commonly
used MIB modules are FRAME-RELAY-DTE-MIB (RFC 2115) [20], FRNETSERV-
MIB (RFC 2954) [18], and ATM-MIB (RFC 2515) [22]. These define
management objects for frame relay DTEs, frame relay services, and
ATM respectively. Each of these MIB modules contain the ability to
add or delete circuits; however, none create a specific ifEntry for
a circuit. The reason for this is that there are potentially
multiple circuits and not every circuit needs to be managed as an
individual interface. For example, not every circuit on a device
needs to be monitored with RMON and not every circuit needs to be
included as an individual circuit for routing. Further, the
Interfaces Group MIB (RFC 2863) [17] strongly recommends that
conceptual rows not be added to the ifTable for virtual circuits.
The rationale for creating conceptual rows in the ifTable for these
circuits is that there is a need for their use in either management
of routing or monitoring of data. Both of these functions require
mapping to an ifIndex.
This MIB module is designed such that only those circuits that
require an ifIndex need be added to the ifTable. This prevents
over-populating the ifTable with useless or otherwise unused indices.
While this document often refers to ATM and frame relay, it is not
specifically designed for only those types of circuits. Any circuit
that is defined in a MIB module but does not have its own ifIndex MAY
be added with this MIB module.
3.2. Theory of Operation
3.2.1. Creation Process
In some cases, devices will automatically populate the rows of
ciCircuitTable as circuits are created or discovered. However, in
many cases, it may be necessary for a network manager to manually
create rows.
Manual creation of rows requires the following steps:
1) Locate or create the circuit that is to be added on the device.
2) Create a row in ciCircuitTable for each flow type that is
required.
The first step above requires some knowledge of the circuits that
exist on a device. Typically, logical ports have entries in the
Steinberger & Nicklass Standards Track [Page 4]
RFC 3201 Circuit to Interface MIB January 2002
ifTable. If, for example, the ifType for the logical port is
frameRelay(32), the circuits can be located in the frCircuitTable of
the Frame Relay DTE MIB (FRAME-RELAY-DTE-MIB) [18]. If, as another
example, the ifType for the logical port is frameRelayService(44),
the circuits can be located in the frPVCEndptTable of the Frame Relay
Service MIB (FRNETSERV-MIB) [20]. If, as a final example, the ifType
for the logical port is aal5(49), the circuits can be located in the
aal5VccTable of the ATM MIB (ATM-MIB) [22]. An entry describing the
circuit MUST exist in some table prior to creating a row in
ciCircuitTable. The object identifier that MUST be used in the
circuit definition is the lexicographically smallest accessible OID
that fully describes the the circuit.
3.2.2. Destruction Process
3.2.2.1. Manual Row Destruction
Manual row destruction is straight forward. Any row can be destroyed
and the resources allocated to it are freed by setting the value of
its status object (ciCircuitStatus) to destroy(6). It should be
noted that when ciCircuitStatus is set to destroy(6) all associated
rows in the ifTable and in ciIfMapTable will also be destroyed. This
process MAY trigger further row destruction in other tables as well.
3.2.2.2. Automatic Row Destruction
Rows in the tables MAY be destroyed automatically based on the
existence of the circuit on which they rely. When a circuit no
longer exists in the device, the data in the tables has no relation
to anything known on the network. For this reason, rows MUST be
removed from this table as soon as it is discovered that the
associated circuits no longer exist. The effects of automatic row
destruction are the same as manual row destruction.
3.2.3. Modification Process
Since no objects in the MIB module can be changed once rows are
active, there are no modification caveats.
3.2.4. Persistence of Data
Each row in the tables of this MIB module relies on information from
other MIB modules. The rules for persistence of the data SHOULD
follow the same rules as those of the underlying MIB module. For
example, if the circuit defined by ciCircuitObject would normally be
stored in non-volatile memory, then the ciCircuitEntry SHOULD also be
non-volatile.
Steinberger & Nicklass Standards Track [Page 5]
RFC 3201 Circuit to Interface MIB January 2002
4. Relation to Other MIB Modules
4.1. Frame Relay DTE MIB
There is no required relation to the Frame Relay DTE MIB beyond the
fact that rows in the frCircuitTable MAY be referenced. However, if
frCircuitLogicalIfIndex is being used to represent the same
information as a ciCircuitEntry with a value of ciCircuitFlow equal
to both(3), the implementation MAY use the same ifIndex.
4.2. Frame Relay Service MIB
There is no explicit relation to the Frame Relay Service MIB beyond
the fact that a rows in the frPVCEndptTable MAY be referenced.
4.3. ATM MIB
There is no explicit relation to the ATM MIB beyond the fact that
rows in multiple tables may be referenced.
4.4. Interfaces Group MIB
4.4.1. Interfaces Table (ifTable, ifXtable)
The following specifies how the Interfaces Group defined in the IF-
MIB will be used for the management of interfaces created by this MIB
module.
Values of specific ifTable objects for circuit interfaces are as
follows:
Object Name Value of Object
=========== =====================================================
ifIndex Each entry in the circuit table is represented by an
ifEntry. The value of ifIndex is defined by the agent
such that it complies with any internal numbering
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -