📄 rfc2178.txt
字号:
metrics. For each advertised external route, the total cost from
Router RT6 is calculated as the sum of the external route's
advertised cost and the distance from Router RT6 to the advertising
router. When two routers are advertising the same external
destination, RT6 picks the advertising router providing the minimum
total cost. RT6 then sets the next hop to the external destination
equal to the next hop that would be used when routing packets to the
chosen advertising router.
In Figure 2, both Router RT5 and RT7 are advertising an external
route to destination Network N12. Router RT7 is preferred since it
is advertising N12 at a distance of 10 (8+2) to Router RT6, which is
better than Router RT5's 14 (6+8). Table 3 shows the entries that
are added to the routing table when external routes are examined:
Destination Next Hop Distance
__________________________________
N12 RT10 10
N13 RT5 14
N14 RT5 14
N15 RT10 17
Table 3: The portion of Router RT6's routing table
listing external destinations.
Processing of Type 2 external metrics is simpler. The AS boundary
router advertising the smallest external metric is chosen, regardless
of the internal distance to the AS boundary router. Suppose in our
example both Router RT5 and Router RT7 were advertising Type 2
external routes. Then all traffic destined for Network N12 would be
forwarded to Router RT7, since 2 < 8. When several equal-cost Type 2
routes exist, the internal distance to the advertising routers is
used to break the tie.
Both Type 1 and Type 2 external metrics can be present in the AS at
the same time. In that event, Type 1 external metrics always take
precedence.
This section has assumed that packets destined for external
destinations are always routed through the advertising AS boundary
router. This is not always desirable. For example, suppose in
Figure 2 there is an additional router attached to Network N6, called
Router RTX. Suppose further that RTX does not participate in OSPF
Moy Standards Track [Page 21]
RFC 2178 OSPF Version 2 July 1997
routing, but does exchange BGP information with the AS boundary
router RT7. Then, Router RT7 would end up advertising OSPF external
routes for all destinations that should be routed to RTX. An extra
hop will sometimes be introduced if packets for these destinations
need always be routed first to Router RT7 (the advertising router).
To deal with this situation, the OSPF protocol allows an AS boundary
router to specify a "forwarding address" in its AS- external-LSAs. In
the above example, Router RT7 would specify RTX's IP address as the
"forwarding address" for all those destinations whose packets should
be routed directly to RTX.
The "forwarding address" has one other application. It enables
routers in the Autonomous System's interior to function as "route
servers". For example, in Figure 2 the router RT6 could become a
route server, gaining external routing information through a
combination of static configuration and external routing protocols.
RT6 would then start advertising itself as an AS boundary router, and
would originate a collection of OSPF AS-external-LSAs. In each AS-
external-LSA, Router RT6 would specify the correct Autonomous System
exit point to use for the destination through appropriate setting of
the LSA's "forwarding address" field.
2.4. Equal-cost multipath
The above discussion has been simplified by considering only a single
route to any destination. In reality, if multiple equal-cost routes
to a destination exist, they are all discovered and used. This
requires no conceptual changes to the algorithm, and its discussion
is postponed until we consider the tree-building process in more
detail.
With equal cost multipath, a router potentially has several available
next hops towards any given destination.
3. Splitting the AS into Areas
OSPF allows collections of contiguous networks and hosts to be
grouped together. Such a group, together with the routers having
interfaces to any one of the included networks, is called an area.
Each area runs a separate copy of the basic link-state routing
algorithm. This means that each area has its own link-state database
and corresponding graph, as explained in the previous section.
The topology of an area is invisible from the outside of the area.
Conversely, routers internal to a given area know nothing of the
detailed topology external to the area. This isolation of knowledge
enables the protocol to effect a marked reduction in routing traffic
Moy Standards Track [Page 22]
RFC 2178 OSPF Version 2 July 1997
as compared to treating the entire Autonomous System as a single
link-state domain.
With the introduction of areas, it is no longer true that all routers
in the AS have an identical link-state database. A router actually
has a separate link-state database for each area it is connected to.
(Routers connected to multiple areas are called area border routers).
Two routers belonging to the same area have, for that area, identical
area link-state databases.
Routing in the Autonomous System takes place on two levels, depending
on whether the source and destination of a packet reside in the same
area (intra-area routing is used) or different areas (inter-area
routing is used). In intra-area routing, the packet is routed solely
on information obtained within the area; no routing information
obtained from outside the area can be used. This protects intra-area
routing from the injection of bad routing information. We discuss
inter-area routing in Section 3.2.
3.1. The backbone of the Autonomous System
The OSPF backbone is the special OSPF Area 0 (often written as Area
0.0.0.0, since OSPF Area ID's are typically formatted as IP
addresses). The OSPF backbone always contains all area border
routers. The backbone is responsible for distributing routing
information between non-backbone areas. The backbone must be
contiguous. However, it need not be physically contiguous; backbone
connectivity can be established/maintained through the configuration
of virtual links.
Virtual links can be configured between any two backbone routers that
have an interface to a common non-backbone area. Virtual links
belong to the backbone. The protocol treats two routers joined by a
virtual link as if they were connected by an unnumbered point-to-
point backbone network. On the graph of the backbone, two such
routers are joined by arcs whose costs are the intra-area distances
between the two routers. The routing protocol traffic that flows
along the virtual link uses intra-area routing only.
3.2. Inter-area routing
When routing a packet between two non-backbone areas the backbone is
used. The path that the packet will travel can be broken up into
three contiguous pieces: an intra-area path from the source to an
area border router, a backbone path between the source and
destination areas, and then another intra-area path to the
destination. The algorithm finds the set of such paths that have the
smallest cost.
Moy Standards Track [Page 23]
RFC 2178 OSPF Version 2 July 1997
Looking at this another way, inter-area routing can be pictured as
forcing a star configuration on the Autonomous System, with the
backbone as hub and each of the non-backbone areas as spokes.
The topology of the backbone dictates the backbone paths used between
areas. The topology of the backbone can be enhanced by adding
virtual links. This gives the system administrator some control over
the routes taken by inter-area traffic.
The correct area border router to use as the packet exits the source
area is chosen in exactly the same way routers advertising external
routes are chosen. Each area border router in an area summarizes for
the area its cost to all networks external to the area. After the
SPF tree is calculated for the area, routes to all inter-area
destinations are calculated by examining the summaries of the area
border routers.
3.3. Classification of routers
Before the introduction of areas, the only OSPF routers having a
specialized function were those advertising external routing
information, such as Router RT5 in Figure 2. When the AS is split
into OSPF areas, the routers are further divided according to
function into the following four overlapping categories:
Internal routers
A router with all directly connected networks belonging to the
same area. These routers run a single copy of the basic routing
algorithm.
Area border routers
A router that attaches to multiple areas. Area border routers run
multiple copies of the basic algorithm, one copy for each attached
area. Area border routers condense the topological information of
their attached areas for distribution to the backbone. The
backbone in turn distributes the information to the other areas.
Backbone routers
A router that has an interface to the backbone area. This
includes all routers that interface to more than one area (i.e.,
area border routers). However, backbone routers do not have to be
area border routers. Routers with all interfaces connecting to
the backbone area are supported.
Moy Standards Track [Page 24]
RFC 2178 OSPF Version 2 July 1997
AS boundary routers
A router that exchanges routing information with routers belonging
to other Autonomous Systems. Such a router advertises AS external
routing information throughout the Autonomous System. The paths
to each AS boundary router are known by every router in the AS.
This classification is completely independent of the previous
classifications: AS boundary routers may be internal or area
border routers, and may or may not participate in the backbone.
3.4. A sample area configuration
Figure 6 shows a sample area configuration. The first area consists
of networks N1-N4, along with their attached routers RT1-RT4. The
second area consists of networks N6-N8, along with their attached
routers RT7, RT8, RT10 and RT11. The third area consists of networks
N9-N11 and Host H1, along with their attached routers RT9, RT11 and
RT12. The third area has been configured so that networks N9-N11 and
Host H1 will all be grouped into a single route, when advertised
external to the area (see Section 3.5 for more details).
In Figure 6, Routers RT1, RT2, RT5, RT6, RT8, RT9 and RT12 are
internal routers. Routers RT3, RT4, RT7, RT10 and RT11 are area
border routers. Finally, as before, Routers RT5 and RT7 are AS
boundary routers.
Figure 7 shows the resulting link-state database for the Area 1. The
figure completely describes that area's intra-area routing.
Moy Standards Track [Page 25]
RFC 2178 OSPF Version 2 July 1997
.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -