📄 rfc2178.txt
字号:
+
| 3+---+ N12 N14
N1|--|RT1|\ 1 \ N13 /
| +---+ \ 8\ |8/8
+ \ ____ \|/
/ \ 1+---+8 8+---+6
* N3 *---|RT4|------|RT5|--------+
\____/ +---+ +---+ |
+ / | |7 |
| 3+---+ / | | |
N2|--|RT2|/1 |1 |6 |
| +---+ +---+8 6+---+ |
+ |RT3|--------------|RT6| |
+---+ +---+ |
|2 Ia|7 |
| | |
+---------+ | |
N4 | |
| |
| |
N11 | |
+---------+ | |
| | | N12
|3 | |6 2/
+---+ | +---+/
|RT9| | |RT7|---N15
+---+ | +---+ 9
|1 + | |1
_|__ | Ib|5 __|_
/ \ 1+----+2 | 3+----+1 / \
* N9 *------|RT11|----|---|RT10|---* N6 *
\____/ +----+ | +----+ \____/
| | |
|1 + |1
+--+ 10+----+ N8 +---+
|H1|-----|RT12| |RT8|
+--+SLIP +----+ +---+
|2 |4
| |
+---------+ +--------+
N10 N7
Figure 2: A sample Autonomous System
Moy Standards Track [Page 16]
RFC 2178 OSPF Version 2 July 1997
**FROM**
|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
|1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
----- ---------------------------------------------
RT1| | | | | | | | | | | | |0 | | | |
RT2| | | | | | | | | | | | |0 | | | |
RT3| | | | | |6 | | | | | | |0 | | | |
RT4| | | | |8 | | | | | | | |0 | | | |
RT5| | | |8 | |6 |6 | | | | | | | | | |
RT6| | |8 | |7 | | | | |5 | | | | | | |
RT7| | | | |6 | | | | | | | | |0 | | |
* RT8| | | | | | | | | | | | | |0 | | |
* RT9| | | | | | | | | | | | | | | |0 |
T RT10| | | | | |7 | | | | | | | |0 |0 | |
O RT11| | | | | | | | | | | | | | |0 |0 |
* RT12| | | | | | | | | | | | | | | |0 |
* N1|3 | | | | | | | | | | | | | | | |
N2| |3 | | | | | | | | | | | | | | |
N3|1 |1 |1 |1 | | | | | | | | | | | | |
N4| | |2 | | | | | | | | | | | | | |
N6| | | | | | |1 |1 | |1 | | | | | | |
N7| | | | | | | |4 | | | | | | | | |
N8| | | | | | | | | |3 |2 | | | | | |
N9| | | | | | | | |1 | |1 |1 | | | | |
N10| | | | | | | | | | | |2 | | | | |
N11| | | | | | | | |3 | | | | | | | |
N12| | | | |8 | |2 | | | | | | | | | |
N13| | | | |8 | | | | | | | | | | | |
N14| | | | |8 | | | | | | | | | | | |
N15| | | | | | |9 | | | | | | | | | |
H1| | | | | | | | | | | |10| | | | |
Figure 3: The resulting directed graph
Networks and routers are represented by vertices.
An edge of cost X connects Vertex A to Vertex B iff
the intersection of Column A and Row B is marked
with an X.
The link-state database is pieced together from LSAs generated by the
routers. In the associated graphical representation, the
neighborhood of each router or transit network is represented in a
single, separate LSA. Figure 4 shows these LSAs graphically. Router
RT12 has an interface to two broadcast networks and a SLIP line to a
host. Network N6 is a broadcast network with three attached routers.
The cost of all links from Network N6 to its attached routers is 0.
Moy Standards Track [Page 17]
RFC 2178 OSPF Version 2 July 1997
Note that the LSA for Network N6 is actually generated by one of the
network's attached routers: the router that has been elected
Designated Router for the network.
2.2. The shortest-path tree
When no OSPF areas are configured, each router in the Autonomous
System has an identical link-state database, leading to an identical
graphical representation. A router generates its routing table from
this graph by calculating a tree of shortest paths with the router
itself as root. Obviously, the shortest- path tree depends on the
router doing the calculation. The shortest-path tree for Router RT6
in our example is depicted in Figure 5.
The tree gives the entire path to any destination network or host.
However, only the next hop to the destination is used in the
forwarding process. Note also that the best route to any router has
also been calculated. For the processing of external data, we note
the next hop and distance to any router advertising external routes.
The resulting routing table for Router RT6 is pictured in Table 2.
Note that there is a separate route for each end of a numbered
point-to-point network (in this case, the serial line between Routers
RT6 and RT10).
**FROM** **FROM**
|RT12|N9|N10|H1| |RT9|RT11|RT12|N9|
* -------------------- * ----------------------
* RT12| | | | | * RT9| | | |0 |
T N9|1 | | | | T RT11| | | |0 |
O N10|2 | | | | O RT12| | | |0 |
* H1|10 | | | | * N9| | | | |
* *
RT12's router-LSA N9's network-LSA
Figure 4: Individual link state components
Networks and routers are represented by vertices.
An edge of cost X connects Vertex A to Vertex B iff
the intersection of Column A and Row B is marked
with an X.
Moy Standards Track [Page 18]
RFC 2178 OSPF Version 2 July 1997
RT6(origin)
RT5 o------------o-----------o Ib
/|\ 6 |\ 7
8/8|8\ | \
/ | \ 6| \
o | o | \7
N12 o N14 | \
N13 2 | \
N4 o-----o RT3 \
/ \ 5
1/ RT10 o-------o Ia
/ |\
RT4 o-----o N3 3| \1
/| | \ N6 RT7
/ | N8 o o---------o
/ | | | /|
RT2 o o RT1 | | 2/ |9
/ | | |RT8 / |
/3 |3 RT11 o o o o
/ | | | N12 N15
N2 o o N1 1| |4
| |
N9 o o N7
/|
/ |
N11 RT9 / |RT12
o--------o-------o o--------o H1
3 | 10
|2
|
o N10
Figure 5: The SPF tree for Router RT6
Edges that are not marked with a cost have a cost of of zero (these
are network-to-router links). Routes to networks N12-N15 are external
information that is considered in Section 2.3
Moy Standards Track [Page 19]
RFC 2178 OSPF Version 2 July 1997
Destination Next Hop Distance
__________________________________
N1 RT3 10
N2 RT3 10
N3 RT3 7
N4 RT3 8
Ib * 7
Ia RT10 12
N6 RT10 8
N7 RT10 12
N8 RT10 10
N9 RT10 11
N10 RT10 13
N11 RT10 14
H1 RT10 21
__________________________________
RT5 RT5 6
RT7 RT10 8
Table 2: The portion of Router RT6's routing table listing local
destinations.
Routes to networks belonging to other AS'es (such as N12) appear as
dashed lines on the shortest path tree in Figure 5. Use of this
externally derived routing information is considered in the next
section.
2.3. Use of external routing information
After the tree is created the external routing information is
examined. This external routing information may originate from
another routing protocol such as BGP, or be statically configured
(static routes). Default routes can also be included as part of the
Autonomous System's external routing information.
External routing information is flooded unaltered throughout the AS.
In our example, all the routers in the Autonomous System know that
Router RT7 has two external routes, with metrics 2 and 9.
OSPF supports two types of external metrics. Type 1 external metrics
are expressed in the same units as OSPF interface cost (i.e., in
terms of the link state metric). Type 2 external metrics are an
order of magnitude larger; any Type 2 metric is considered greater
than the cost of any path internal to the AS. Use of Type 2 external
metrics assumes that routing between AS'es is the major cost of
routing a packet, and eliminates the need for conversion of external
costs to internal link state metrics.
Moy Standards Track [Page 20]
RFC 2178 OSPF Version 2 July 1997
As an example of Type 1 external metric processing, suppose that the
Routers RT7 and RT5 in Figure 2 are advertising Type 1 external
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -