⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rfc2178.txt

📁 RFC 的详细文档!
💻 TXT
📖 第 1 页 / 共 5 页
字号:
                 +
                 | 3+---+                     N12      N14
               N1|--|RT1|\ 1                    \ N13 /
                 |  +---+ \                     8\ |8/8
                 +         \ ____                 \|/
                            /    \   1+---+8    8+---+6
                           *  N3  *---|RT4|------|RT5|--------+
                            \____/    +---+      +---+        |
                  +         /   |                  |7         |
                  | 3+---+ /    |                  |          |
                N2|--|RT2|/1    |1                 |6         |
                  |  +---+    +---+8            6+---+        |
                  +           |RT3|--------------|RT6|        |
                              +---+              +---+        |
                                |2               Ia|7         |
                                |                  |          |
                           +---------+             |          |
                               N4                  |          |
                                                   |          |
                                                   |          |
                       N11                         |          |
                   +---------+                     |          |
                        |                          |          |    N12
                        |3                         |          |6 2/
                      +---+                        |        +---+/
                      |RT9|                        |        |RT7|---N15
                      +---+                        |        +---+ 9
                        |1                   +     |          |1
                       _|__                  |   Ib|5       __|_
                      /    \      1+----+2   |  3+----+1   /    \
                     *  N9  *------|RT11|----|---|RT10|---*  N6  *
                      \____/       +----+    |   +----+    \____/
                        |                    |                |
                        |1                   +                |1
             +--+   10+----+                N8              +---+
             |H1|-----|RT12|                                |RT8|
             +--+SLIP +----+                                +---+
                        |2                                    |4
                        |                                     |
                   +---------+                            +--------+
                       N10                                    N7

                  Figure 2: A sample Autonomous System








Moy                         Standards Track                    [Page 16]

RFC 2178                     OSPF Version 2                    July 1997


                                **FROM**

                 |RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|
                 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
              ----- ---------------------------------------------
              RT1|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT2|  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |  |
              RT3|  |  |  |  |  |6 |  |  |  |  |  |  |0 |  |  |  |
              RT4|  |  |  |  |8 |  |  |  |  |  |  |  |0 |  |  |  |
              RT5|  |  |  |8 |  |6 |6 |  |  |  |  |  |  |  |  |  |
              RT6|  |  |8 |  |7 |  |  |  |  |5 |  |  |  |  |  |  |
              RT7|  |  |  |  |6 |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT8|  |  |  |  |  |  |  |  |  |  |  |  |  |0 |  |  |
          *   RT9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          T  RT10|  |  |  |  |  |7 |  |  |  |  |  |  |  |0 |0 |  |
          O  RT11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |0 |
          *  RT12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |0 |
          *    N1|3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N2|  |3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N3|1 |1 |1 |1 |  |  |  |  |  |  |  |  |  |  |  |  |
               N4|  |  |2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
               N6|  |  |  |  |  |  |1 |1 |  |1 |  |  |  |  |  |  |
               N7|  |  |  |  |  |  |  |4 |  |  |  |  |  |  |  |  |
               N8|  |  |  |  |  |  |  |  |  |3 |2 |  |  |  |  |  |
               N9|  |  |  |  |  |  |  |  |1 |  |1 |1 |  |  |  |  |
              N10|  |  |  |  |  |  |  |  |  |  |  |2 |  |  |  |  |
              N11|  |  |  |  |  |  |  |  |3 |  |  |  |  |  |  |  |
              N12|  |  |  |  |8 |  |2 |  |  |  |  |  |  |  |  |  |
              N13|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N14|  |  |  |  |8 |  |  |  |  |  |  |  |  |  |  |  |
              N15|  |  |  |  |  |  |9 |  |  |  |  |  |  |  |  |  |
               H1|  |  |  |  |  |  |  |  |  |  |  |10|  |  |  |  |


                 Figure 3: The resulting directed graph

           Networks and routers are represented by vertices.
          An edge of cost X connects Vertex A to Vertex B iff
            the intersection of Column A and Row B is marked
                               with an X.

   The link-state database is pieced together from LSAs generated by the
   routers.  In the associated graphical representation, the
   neighborhood of each router or transit network is represented in a
   single, separate LSA.  Figure 4 shows these LSAs graphically. Router
   RT12 has an interface to two broadcast networks and a SLIP line to a
   host.  Network N6 is a broadcast network with three attached routers.
   The cost of all links from Network N6 to its attached routers is 0.



Moy                         Standards Track                    [Page 17]

RFC 2178                     OSPF Version 2                    July 1997


   Note that the LSA for Network N6 is actually generated by one of the
   network's attached routers: the router that has been elected
   Designated Router for the network.

2.2.  The shortest-path tree

   When no OSPF areas are configured, each router in the Autonomous
   System has an identical link-state database, leading to an identical
   graphical representation.  A router generates its routing table from
   this graph by calculating a tree of shortest paths with the router
   itself as root.  Obviously, the shortest- path tree depends on the
   router doing the calculation.  The shortest-path tree for Router RT6
   in our example is depicted in Figure 5.

   The tree gives the entire path to any destination network or host.
   However, only the next hop to the destination is used in the
   forwarding process.   Note also that the best route to any router has
   also been calculated.  For the processing of external data, we note
   the next hop and distance to any router advertising external routes.
   The resulting routing table for Router RT6 is pictured in Table 2.
   Note that there is a separate route for each end of a numbered
   point-to-point network (in this case, the serial line between Routers
   RT6 and RT10).


                     **FROM**                       **FROM**

                  |RT12|N9|N10|H1|                 |RT9|RT11|RT12|N9|
           *  --------------------          *  ----------------------
           *  RT12|    |  |   |  |          *   RT9|   |    |    |0 |
           T    N9|1   |  |   |  |          T  RT11|   |    |    |0 |
           O   N10|2   |  |   |  |          O  RT12|   |    |    |0 |
           *    H1|10  |  |   |  |          *    N9|   |    |    |  |
           *                                *
                RT12's router-LSA              N9's network-LSA

               Figure 4: Individual link state components

           Networks and routers are represented by vertices.
          An edge of cost X connects Vertex A to Vertex B iff
            the intersection of Column A and Row B is marked
                               with an X.









Moy                         Standards Track                    [Page 18]

RFC 2178                     OSPF Version 2                    July 1997


                                RT6(origin)
                    RT5 o------------o-----------o Ib
                       /|\    6      |\     7
                     8/8|8\          | \
                     /  |  \        6|  \
                    o   |   o        |   \7
                   N12  o  N14       |    \
                       N13        2  |     \
                            N4 o-----o RT3  \
                                    /        \    5
                                  1/     RT10 o-------o Ia
                                  /           |\
                       RT4 o-----o N3        3| \1
                                /|            |  \ N6     RT7
                               / |         N8 o   o---------o
                              /  |            |   |        /|
                         RT2 o   o RT1        |   |      2/ |9
                            /    |            |   |RT8   /  |
                           /3    |3      RT11 o   o     o   o
                          /      |            |   |    N12 N15
                      N2 o       o N1        1|   |4
                                              |   |
                                           N9 o   o N7
                                             /|
                                            / |
                        N11      RT9       /  |RT12
                         o--------o-------o   o--------o H1
                             3                |   10
                                              |2
                                              |
                                              o N10


                 Figure 5: The SPF tree for Router RT6

  Edges that are not marked with a cost have a cost of of zero (these
 are network-to-router links). Routes to networks N12-N15 are external
             information that is considered in Section 2.3













Moy                         Standards Track                    [Page 19]

RFC 2178                     OSPF Version 2                    July 1997


           Destination   Next  Hop   Distance
           __________________________________
           N1            RT3         10
           N2            RT3         10
           N3            RT3         7
           N4            RT3         8
           Ib            *           7
           Ia            RT10        12
           N6            RT10        8
           N7            RT10        12
           N8            RT10        10
           N9            RT10        11
           N10           RT10        13
           N11           RT10        14
           H1            RT10        21
           __________________________________
           RT5           RT5         6
           RT7           RT10        8

    Table 2: The portion of Router RT6's routing table listing local
                             destinations.

   Routes to networks belonging to other AS'es (such as N12) appear as
   dashed lines on the shortest path tree in Figure 5.  Use of this
   externally derived routing information is considered in the next
   section.

2.3.  Use of external routing information

   After the tree is created the external routing information is
   examined.  This external routing information may originate from
   another routing protocol such as BGP, or be statically configured
   (static routes).  Default routes can also be included as part of the
   Autonomous System's external routing information.

   External routing information is flooded unaltered throughout the AS.
   In our example, all the routers in the Autonomous System know that
   Router RT7 has two external routes, with metrics 2 and 9.

   OSPF supports two types of external metrics.  Type 1 external metrics
   are expressed in the same units as OSPF interface cost (i.e., in
   terms of the link state metric).  Type 2 external metrics are an
   order of magnitude larger; any Type 2 metric is considered greater
   than the cost of any path internal to the AS.  Use of Type 2 external
   metrics assumes that routing between AS'es is the major cost of
   routing a packet, and eliminates the need for conversion of external
   costs to internal link state metrics.




Moy                         Standards Track                    [Page 20]

RFC 2178                     OSPF Version 2                    July 1997


   As an example of Type 1 external metric processing, suppose that the
   Routers RT7 and RT5 in Figure 2 are advertising Type 1 external

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -