📄 rfc2178.txt
字号:
RFC 2178 OSPF Version 2 July 1997
All routers run the exact same algorithm, in parallel. From the
link-state database, each router constructs a tree of shortest paths
with itself as root. This shortest-path tree gives the route to each
destination in the Autonomous System. Externally derived routing
information appears on the tree as leaves.
When several equal-cost routes to a destination exist, traffic is
distributed equally among them. The cost of a route is described by
a single dimensionless metric.
OSPF allows sets of networks to be grouped together. Such a grouping
is called an area. The topology of an area is hidden from the rest
of the Autonomous System. This information hiding enables a
significant reduction in routing traffic. Also, routing within the
area is determined only by the area's own topology, lending the area
protection from bad routing data. An area is a generalization of an
IP subnetted network.
OSPF enables the flexible configuration of IP subnets. Each route
distributed by OSPF has a destination and mask. Two different
subnets of the same IP network number may have different sizes (i.e.,
different masks). This is commonly referred to as variable length
subnetting. A packet is routed to the best (i.e., longest or most
specific) match. Host routes are considered to be subnets whose
masks are "all ones" (0xffffffff).
All OSPF protocol exchanges are authenticated. This means that only
trusted routers can participate in the Autonomous System's routing.
A variety of authentication schemes can be used; in fact, separate
authentication schemes can be configured for each IP subnet.
Externally derived routing data (e.g., routes learned from an
Exterior Gateway Protocol such as BGP; see [Ref23]) is advertised
throughout the Autonomous System. This externally derived data is
kept separate from the OSPF protocol's link state data. Each
external route can also be tagged by the advertising router, enabling
the passing of additional information between routers on the boundary
of the Autonomous System.
1.2. Definitions of commonly used terms
This section provides definitions for terms that have a specific
meaning to the OSPF protocol and that are used throughout the text.
The reader unfamiliar with the Internet Protocol Suite is referred to
[Ref13] for an introduction to IP.
Moy Standards Track [Page 6]
RFC 2178 OSPF Version 2 July 1997
Router
A level three Internet Protocol packet switch. Formerly called a
gateway in much of the IP literature.
Autonomous System
A group of routers exchanging routing information via a common
routing protocol. Abbreviated as AS.
Interior Gateway Protocol
The routing protocol spoken by the routers belonging to an
Autonomous system. Abbreviated as IGP. Each Autonomous System has
a single IGP. Separate Autonomous Systems may be running
different IGPs.
Router ID
A 32-bit number assigned to each router running the OSPF protocol.
This number uniquely identifies the router within an Autonomous
System.
Network
In this memo, an IP network/subnet/supernet. It is possible for
one physical network to be assigned multiple IP network/subnet
numbers. We consider these to be separate networks. Point-to-
point physical networks are an exception - they are considered a
single network no matter how many (if any at all) IP
network/subnet numbers are assigned to them.
Network mask
A 32-bit number indicating the range of IP addresses residing on a
single IP network/subnet/supernet. This specification displays
network masks as hexadecimal numbers. For example, the network
mask for a class C IP network is displayed as 0xffffff00. Such a
mask is often displayed elsewhere in the literature as
255.255.255.0.
Point-to-point networks
A network that joins a single pair of routers. A 56Kb serial line
is an example of a point-to-point network.
Moy Standards Track [Page 7]
RFC 2178 OSPF Version 2 July 1997
Broadcast networks
Networks supporting many (more than two) attached routers,
together with the capability to address a single physical message
to all of the attached routers (broadcast). Neighboring routers
are discovered dynamically on these nets using OSPF's Hello
Protocol. The Hello Protocol itself takes advantage of the
broadcast capability. The OSPF protocol makes further use of
multicast capabilities, if they exist. Each pair of routers on a
broadcast network is assumed to be able to communicate directly.
An ethernet is an example of a broadcast network.
Non-broadcast networks
Networks supporting many (more than two) routers, but having no
broadcast capability. Neighboring routers are maintained on these
nets using OSPF's Hello Protocol. However, due to the lack of
broadcast capability, some configuration information may be
necessary to aid in the discovery of neighbors. On non-broadcast
networks, OSPF protocol packets that are normally multicast need
to be sent to each neighboring router, in turn. An X.25 Public
Data Network (PDN) is an example of a non-broadcast network.
OSPF runs in one of two modes over non-broadcast networks. The
first mode, called non-broadcast multi-access or NBMA, simulates
the operation of OSPF on a broadcast network. The second mode,
called Point-to-MultiPoint, treats the non-broadcast network as a
collection of point-to-point links. Non-broadcast networks are
referred to as NBMA networks or Point-to-MultiPoint networks,
depending on OSPF's mode of operation over the network.
Interface
The connection between a router and one of its attached networks.
An interface has state information associated with it, which is
obtained from the underlying lower level protocols and the routing
protocol itself. An interface to a network has associated with it
a single IP address and mask (unless the network is an unnumbered
point-to-point network). An interface is sometimes also referred
to as a link.
Neighboring routers
Two routers that have interfaces to a common network. Neighbor
relationships are maintained by, and usually dynamically
discovered by, OSPF's Hello Protocol.
Adjacency
A relationship formed between selected neighboring routers for the
purpose of exchanging routing information. Not every pair of
neighboring routers become adjacent.
Moy Standards Track [Page 8]
RFC 2178 OSPF Version 2 July 1997
Link state advertisement
Unit of data describing the local state of a router or network.
For a router, this includes the state of the router's interfaces
and adjacencies. Each link state advertisement is flooded
throughout the routing domain. The collected link state
advertisements of all routers and networks forms the protocol's
link state database. Throughout this memo, link state
advertisement is abbreviated as LSA.
Hello Protocol
The part of the OSPF protocol used to establish and maintain
neighbor relationships. On broadcast networks the Hello Protocol
can also dynamically discover neighboring routers.
Flooding
The part of the OSPF protocol that distributes and synchronizes
the link-state database between OSPF routers.
Designated Router
Each broadcast and NBMA network that has at least two attached
routers has a Designated Router. The Designated Router generates
an LSA for the network and has other special responsibilities in
the running of the protocol. The Designated Router is elected by
the Hello Protocol.
The Designated Router concept enables a reduction in the number of
adjacencies required on a broadcast or NBMA network. This in turn
reduces the amount of routing protocol traffic and the size of the
link-state database.
Lower-level protocols
The underlying network access protocols that provide services to
the Internet Protocol and in turn the OSPF protocol. Examples of
these are the X.25 packet and frame levels for X.25 PDNs, and the
ethernet data link layer for ethernets.
1.3. Brief history of link-state routing technology
OSPF is a link state routing protocol. Such protocols are also
referred to in the literature as SPF-based or distributed-database
protocols. This section gives a brief description of the
developments in link-state technology that have influenced the OSPF
protocol.
The first link-state routing protocol was developed for use in the
ARPANET packet switching network. This protocol is described in
[Ref3]. It has formed the starting point for all other link-state
protocols. The homogeneous ARPANET environment, i.e., single-vendor
Moy Standards Track [Page 9]
RFC 2178 OSPF Version 2 July 1997
packet switches connected by synchronous serial lines, simplified the
design and implementation of the original protocol.
Modifications to this protocol were proposed in [Ref4]. These
modifications dealt with increasing the fault tolerance of the
routing protocol through, among other things, adding a checksum to
the LSAs (thereby detecting database corruption). The paper also
included means for reducing the routing traffic overhead in a link-
state protocol. This was accomplished by introducing mechanisms
which enabled the interval between LSA originations to be increased
by an order of magnitude.
A link-state algorithm has also been proposed for use as an ISO IS-IS
routing protocol. This protocol is described in [Ref2]. The
protocol includes methods for data and routing traffic reduction when
operating over broadcast networks. This is accomplished by election
of a Designated Router for each broadcast network, which then
originates an LSA for the network.
The OSPF Working Group of the IETF has extended this work in
developing the OSPF protocol. The Designated Router concept has been
greatly enhanced to further reduce the amount of routing traffic
required. Multicast capabilities are utilized for additional routing
bandwidth reduction. An area routing scheme has been developed
enabling information hiding/protection/reduction. Finally, the
algorithms have been tailored for efficient operation in TCP/IP
internets.
1.4. Organization of this document
The first three sections of this specification give a general
overview of the protocol's capabilities and functions. Sections 4-16
explain the protocol's mechanisms in detail. Packet formats,
protocol constants and configuration items are specified in the
appendices.
Labels such as HelloInterval encountered in the text refer to
protocol constants. They may or may not be configurable.
Architectural constants are summarized in Appendix B. Configurable
constants are summarized in Appendix C.
The detailed specification of the protocol is presented in terms of
data structures. This is done in order to make the explanation more
precise. Implementations of the protocol are required to support the
functionality described, but need not use the precise data structures
that appear in this memo.
Moy Standards Track [Page 10]
RFC 2178 OSPF Version 2 July 1997
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -