📄 rfc2408.txt
字号:
Section 5 describes the processing of each payload within the context
of ISAKMP exchanges, including error handling and associated actions.
The appendices provide the attribute values necessary for ISAKMP and
requirement for defining a new Domain of Interpretation (DOI) within
ISAKMP.
1.1 Requirements Terminology
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
document, are to be interpreted as described in [RFC-2119].
1.2 The Need for Negotiation
ISAKMP extends the assertion in [DOW92] that authentication and key
exchanges must be combined for better security to include security
association exchanges. The security services required for
Maughan, et. al. Standards Track [Page 5]
RFC 2408 ISAKMP November 1998
communications depends on the individual network configurations and
environments. Organizations are setting up Virtual Private Networks
(VPN), also known as Intranets, that will require one set of security
functions for communications within the VPN and possibly many
different security functions for communications outside the VPN to
support geographically separate organizational components, customers,
suppliers, sub-contractors (with their own VPNs), government, and
others. Departments within large organizations may require a number
of security associations to separate and protect data (e.g.
personnel data, company proprietary data, medical) on internal
networks and other security associations to communicate within the
same department. Nomadic users wanting to "phone home" represent
another set of security requirements. These requirements must be
tempered with bandwidth challenges. Smaller groups of people may
meet their security requirements by setting up "Webs of Trust".
ISAKMP exchanges provide these assorted networking communities the
ability to present peers with the security functionality that the
user supports in an authenticated and protected manner for agreement
upon a common set of security attributes, i.e. an interoperable
security association.
1.3 What can be Negotiated?
Security associations must support different encryption algorithms,
authentication mechanisms, and key establishment algorithms for other
security protocols, as well as IP Security. Security associations
must also support host-oriented certificates for lower layer
protocols and user- oriented certificates for higher level protocols.
Algorithm and mechanism independence is required in applications such
as e-mail, remote login, and file transfer, as well as in session
oriented protocols, routing protocols, and link layer protocols.
ISAKMP provides a common security association and key establishment
protocol for this wide range of security protocols, applications,
security requirements, and network environments.
ISAKMP is not bound to any specific cryptographic algorithm, key
generation technique, or security mechanism. This flexibility is
beneficial for a number of reasons. First, it supports the dynamic
communications environment described above. Second, the independence
from specific security mechanisms and algorithms provides a forward
migration path to better mechanisms and algorithms. When improved
security mechanisms are developed or new attacks against current
encryption algorithms, authentication mechanisms and key exchanges
are discovered, ISAKMP will allow the updating of the algorithms and
mechanisms without having to develop a completely new KMP or patch
the current one.
Maughan, et. al. Standards Track [Page 6]
RFC 2408 ISAKMP November 1998
ISAKMP has basic requirements for its authentication and key exchange
components. These requirements guard against denial of service,
replay / reflection, man-in-the-middle, and connection hijacking
attacks. This is important because these are the types of attacks
that are targeted against protocols. Complete Security Association
(SA) support, which provides mechanism and algorithm independence,
and protection from protocol threats are the strengths of ISAKMP.
1.4 Security Associations and Management
A Security Association (SA) is a relationship between two or more
entities that describes how the entities will utilize security
services to communicate securely. This relationship is represented
by a set of information that can be considered a contract between the
entities. The information must be agreed upon and shared between all
the entities. Sometimes the information alone is referred to as an
SA, but this is just a physical instantiation of the existing
relationship. The existence of this relationship, represented by the
information, is what provides the agreed upon security information
needed by entities to securely interoperate. All entities must
adhere to the SA for secure communications to be possible. When
accessing SA attributes, entities use a pointer or identifier refered
to as the Security Parameter Index (SPI). [SEC-ARCH] provides details
on IP Security Associations (SA) and Security Parameter Index (SPI)
definitions.
1.4.1 Security Associations and Registration
The SA attributes required and recommended for the IP Security (AH,
ESP) are defined in [SEC-ARCH]. The attributes specified for an IP
Security SA include, but are not limited to, authentication
mechanism, cryptographic algorithm, algorithm mode, key length, and
Initialization Vector (IV). Other protocols that provide algorithm
and mechanism independent security MUST define their requirements for
SA attributes. The separation of ISAKMP from a specific SA
definition is important to ensure ISAKMP can es tablish SAs for all
possible security protocols and applications.
NOTE: See [IPDOI] for a discussion of SA attributes that should be
considered when defining a security protocol or application.
In order to facilitate easy identification of specific attributes
(e.g. a specific encryption algorithm) among different network
entites the attributes must be assigned identifiers and these
identifiers must be registered by a central authority. The Internet
Assigned Numbers Authority (IANA) provides this function for the
Internet.
Maughan, et. al. Standards Track [Page 7]
RFC 2408 ISAKMP November 1998
1.4.2 ISAKMP Requirements
Security Association (SA) establishment MUST be part of the key
management protocol defined for IP based networks. The SA concept is
required to support security protocols in a diverse and dynamic
networking environment. Just as authentication and key exchange must
be linked to provide assurance that the key is established with the
authenticated party [DOW92], SA establishment must be linked with the
authentication and the key exchange protocol.
ISAKMP provides the protocol exchanges to establish a security
association between negotiating entities followed by the
establishment of a security association by these negotiating entities
in behalf of some protocol (e.g. ESP/AH). First, an initial protocol
exchange allows a basic set of security attributes to be agreed upon.
This basic set provides protection for subsequent ISAKMP exchanges.
It also indicates the authentication method and key exchange that
will be performed as part of the ISAKMP protocol. If a basic set of
security attributes is already in place between the negotiating
server entities, the initial ISAKMP exchange may be skipped and the
establishment of a security association can be done directly. After
the basic set of security attributes has been agreed upon, initial
identity authenticated, and required keys generated, the established
SA can be used for subsequent communications by the entity that
invoked ISAKMP. The basic set of SA attributes that MUST be
implemented to provide ISAKMP interoperability are defined in
Appendix A.
1.5 Authentication
A very important step in establishing secure network communications
is authentication of the entity at the other end of the
communication. Many authentication mechanisms are available.
Authentication mechanisms fall into two catagories of strength - weak
and strong. Sending cleartext keys or other unprotected
authenticating information over a network is weak, due to the threat
of reading them with a network sniffer. Additionally, sending one-
way hashed poorly-chosen keys with low entropy is also weak, due to
the threat of brute-force guessing attacks on the sniffed messages.
While passwords can be used for establishing identity, they are not
considered in this context because of recent statements from the
Internet Architecture Board [IAB]. Digital signatures, such as the
Digital Signature Standard (DSS) and the Rivest-Shamir-Adleman (RSA)
signature, are public key based strong authentication mechanisms.
When using public key digital signatures each entity requires a
public key and a private key. Certificates are an essential part of
a digital signature authentication mechanism. Certificates bind a
specific entity's identity (be it host, network, user, or
Maughan, et. al. Standards Track [Page 8]
RFC 2408 ISAKMP November 1998
application) to its public keys and possibly other security-related
information such as privileges, clearances, and compartments.
Authentication based on digital signatures requires a trusted third
party or certificate authority to create, sign and properly
distribute certificates. For more detailed information on digital
signatures, such as DSS and RSA, and certificates see [Schneier].
1.5.1 Certificate Authorities
Certificates require an infrastructure for generation, verification,
revocation, management and distribution. The Internet Policy
Registration Authority (IPRA) [RFC-1422] has been established to
direct this infrastructure for the IETF. The IPRA certifies Policy
Certification Authorities (PCA). PCAs control Certificate Authorities
(CA) which certify users and subordinate entities. Current
certificate related work includes the Domain Name System (DNS)
Security Extensions [DNSSEC] which will provide signed entity keys in
the DNS. The Public Key Infrastucture (PKIX) working group is
specifying an Internet profile for X.509 certificates. There is also
work going on in industry to develop X.500 Directory Services which
would provide X.509 certificates to users. The U.S. Post Office is
developing a (CA) hierarchy. The NIST Public Key Infrastructure
Working Group has also been doing work in this area. The DOD Multi
Level Information System Security Initiative (MISSI) program has
begun deploying a certificate infrastructure for the U.S. Government.
Alternatively, if no infrastructure exists, the PGP Web of Trust
certificates can be used to provide user authentication and privacy
in a community of users who know and trust each other.
1.5.2 Entity Naming
An entity's name is its identity and is bound to its public keys in
certificates. The CA MUST define the naming semantics for the
certificates it issues. See the UNINETT PCA Policy Statements
[Berge] for an example of how a CA defines its naming policy. When
the certificate is verified, the name is verified and that name will
have meaning within the realm of that CA. An example is the DNS
security extensions which make DNS servers CAs for the zones and
nodes they serve. Resource records are provided for public keys and
signatures on those keys. The names associated with the keys are IP
addresses and domain names which have meaning to entities accessing
the DNS for this information. A Web of Trust is another example.
When webs of trust are set up, names are bound with the public keys.
In PGP the name is usually the entity's e-mail address which has
meaning to those, and only those, who understand e-mail. Another web
of trust could use an entirely different naming scheme.
Maughan, et. al. Standards Track [Page 9]
RFC 2408 ISAKMP November 1998
1.5.3 ISAKMP Requirements
Strong authentication MUST be provided on ISAKMP exchanges. Without
being able to authenticate the entity at the other end, the Security
Association (SA) and session key established are suspect. Without
authentication you are unable to trust an entity's identification,
which makes access control questionable. While encryption (e.g.
ESP) and integrity (e.g. AH) will protect subsequent communications
from passive eavesdroppers, without authentication it is possible
that the SA and key may have been established with an adversary who
performed an active man-in-the-middle attack and is now stealing all
your personal data.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -