📄 rfc2814.txt
字号:
scenario, they do address most of the interesting scenarios.
Exceptions can be discussed separately.
The forwarding rules are applied to received PATH messages (routers
and switches) or originating PATH messages (hosts), as follows:
1. Determine the interface(s) on which to forward the PATH message
using standard forwarding rules:
* If there is a LAN_LOOPBACK object in the PATH message, and it
carries the address of this device, silently discard the
message. (See the section below on "Additional notes on
forwarding the PATH message onto a managed segment).
* Layer 3 devices use the RSVP session address and perform a
routing lookup to determine the forwarding interface(s).
* Layer 2 devices use the LAN_NHOP_L2 address in the LAN_NHOP
information and MAC forwarding tables to determine the
forwarding interface(s). (See the section below on "Additional
notes on forwarding the PATH message onto a managed segment")
2. For each forwarding interface:
* If the device is a layer 3 device, determine whether the
interface is on a managed segment managed by a DSBM, based on
the presence or absence of I_AM_DSBM messages. If the interface
is not on a managed segment, strip out RSVP_HOP_L2, LAN_NHOP,
LAN_LOOPBACK, and TCLASS objects (if present), and forward to
the unicast or multicast destination.
Yavatkar, et al. Standards Track [Page 20]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
(Note that the RSVP Class Numbers for these new objects are
chosen so that if an RSVP message includes these objects, the
nodes that are RSVP-aware, but do not participate in the SBM
protocol, will ignore and silently discard such objects.)
* If the device is a layer 2 device or it is a layer 3 device
*and* the interface is on a managed segment, proceed to rule
#3.
3. Forward the PATH message onto the managed segment:
* If the device is a layer 3 device, insert LAN_NHOP address
objects, a LAN_LOOPBACK, and a RSVP_HOP_L2 object into the PATH
message. The LAN_NHOP objects carry the LAN_NHOP_L3 and
LAN_NHOP_L2 addresses of the next layer 3 hop. The RSVP_HOP_L2
object carries the device's own L2 address, and the
LAN_LOOPBACK object contains the IP address of the outgoing
interface.
An L3 device should use the map_addr() function described
earlier to obtain an L2 address corresponding to an IP address.
* If the device hosts the DSBM for the segment to which the
forwarding interface is attached, do the following:
- Retrieve the PHOP information from the standard RSVP HOP
object in the PATH message, and store it. This will be used
to route RESV messages back through the L2 network. If the
PATH message arrived over a managed segment, it will also
contain the RSVP_HOP_L2 object; then retrieve and store also
the previous hop's L2 address in the PATH state.
- Copy the IP address of the forwarding interface (layer 2
devices must also have IP addresses) into the standard RSVP
HOP object and the L2 address of the forwarding interface
into the RSVP_HOP_L2 object.
- If the PATH message received does not contain the TCLASS
object, insert a TCLASS object. The user_priority value
inserted in the TCLASS object is based on service mappings
internal to the device that are configured according to the
guidelines listed in [RFC-MAP]. If the message already
contains the TCLASS object, the user_priority value may be
changed based again on the service mappings internal to the
device.
Yavatkar, et al. Standards Track [Page 21]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
* If the device is a layer 3 device and hosts a SBM for the
segment to which the forwarding interface is attached, it *is
required* to retrieve and store the PHOP info.
If the device is a layer 2 device and hosts a SBM for the
segment to which the forwarding interface is attached, it is
*not* required to retrieve and store the PHOP info. If it does
not do so, the SBM must leave the standard RSVP HOP object and
the RSVP_HOP_L2 objects in the PATH message intact and it will
not receive RESV messages.
If the SBM on a L2 device chooses to overwrite the RSVP HOP and
RSVP_HOP_L2 objects with the IP and L2 addresses of its
forwarding interface, it will receive RESV messages. In this
case, it must store the PHOP address info received in the
standard RSVP_HOP field and RSVP_HOP_L2 objects of the incident
PATH message.
In both the cases mentioned above (L2 or L3 devices), the SBM
must forward the TCLASS object in the received PATH message
unchanged.
* Copy the IP address of the forwarding interface into the
LAN_LOOPBACK object, unless the SBM protocol entity is a DSBM
reflecting a PATH message back onto the incident interface.
(See the section below on "Additional notes on forwarding a
PATH message onto a managed segment").
* If the SBM protocol entity is the DSBM for the segment to which
the forwarding interface is attached, it must send the PATH
message to the AllSBMAddress.
* If the SBM protocol entity is a SBM or a DSBM Client on the
segment to which the forwarding interface is attached, it must
send the PATH message to the DSBMLogicalAddress.
5.5.1. Additional notes on forwarding a PATH message onto a managed
segment
Rule #1 states that normal IEEE 802.1D forwarding rules should be
used to determine the interfaces on which the PATH message should be
forwarded. In the case of data packets, standard forwarding rules at
a L2 device dictate that the packet should not be forwarded on the
interface from which it was received. However, in the case of a DSBM
that receives a PATH message over a managed segment, the following
exception applies:
Yavatkar, et al. Standards Track [Page 22]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
E1. If the address in the LAN_NHOP object is a unicast address,
consult the filtering database (FDB) to determine whether the
destination address is listed on the same interface over which
the message was received. If yes, follow the rule below on
"reflecting a PATH message back onto an interface" described
below; otherwise, proceed with the rest of the message
processing as usual.
E2. If there are members of the multicast group address (specified
by the addresses in the LAN_NHOP object), on the segment from
which the message was received, the message should be
forwarded back onto the interface from which it was received
and follow the rule on "reflecting a PATH message back onto an
interface" described below.
*** Reflecting a PATH message back onto an interface ***
Under the circumstances described above, when a DSBM reflects the
PATH message back onto an interface over which it was received, it
must address it using the AllSBMAddress.
Since it is possible for a DSBM to reflect a PATH message back
onto the interface from which it was received, precautions must be
taken to avoid looping these messages indefinitely. The
LAN_LOOPBACK object addresses this issue. All SBM protocol
entities (except DSBMs reflecting a PATH message) overwrite the
LAN_LOOPBACK object in the PATH message with the IP address of the
outgoing interface. DSBMs which are reflecting a PATH message,
leave the LAN_LOOPBACK object unchanged. Thus, SBM protocol
entities will always be able to recognize a reflected multicast
message by the presence of their own address in the LAN_LOOPBACK
object. These messages should be silently discarded.
5.6. Applying the Rules -- Unicast Session
Let's see how the rules are applied in the general network
illustrated previously (see Figure 2).
Assume that H1 is sending a PATH for a unicast session for which H5
is the receiver. The following PATH message is composed by H1:
RSVP Contents
RSVP session IP address IP address of H5 (3.0.0.35)
Sender Template IP address of H1 (1.0.0.11)
PHOP IP address of H1 (1.0.0.11)
RSVP_HOP_L2 n/a (H1 is not sending onto a managed
segment)
LAN_NHOP n/a (H1 is not sending onto a managed
Yavatkar, et al. Standards Track [Page 23]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
segment)
LAN_LOOPBACK n/a (H1 is not sending onto a managed
segment)
IP Header
Source address IP address of H1 (1.0.0.11)
Destn address IP addr of H5 (3.0.0.35, assuming raw mode
& router alert)
MAC Header
Destn address The L2 addr corresponding to R1 (determined
by map_addr() and routing tables at H1)
Since H1 is not sending onto a managed segment, the PATH message is
composed and forwarded according to standard RSVP processing rules.
Upon receipt of the PATH message, R1 composes and forwards a PATH
message as follows:
RSVP Contents
RSVP session IP address IP address of H5
Sender Template IP address of H1
PHOP IP address of R1 (2.0.0.1)
(seed the return path for RESV messages)
RSVP_HOP_L2 L2 address of R1
LAN_NHOP LAN_NHOP_L3 (2.0.0.2) and
LAN_NHOP_L2 address of R2 (L2ADDR)
(this is the next layer 3 hop)
LAN_LOOPBACK IP address of R1 (2.0.0.1)
IP Header
Source address IP address of H1
Destn address DSBMLogical IP address (224.0.0.16)
MAC Header
Destn address DSBMLogical MAC address
* R1 does a routing lookup on the RSVP session address, to
determine the IP address of the next layer 3 hop, R2.
* It determines that R2 is accessible via seg A and that seg A
is managed by a DSBM, S1.
* Therefore, it concludes that it is sending onto a managed
segment, and composes LAN_NHOP objects to carry the layer 3
and layer 2 next hop addresses. To compose the LAN_NHOP
L2ADDR object, it invokes the L3 to L2 address mapping function
Yavatkar, et al. Standards Track [Page 24]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
("map_address") to find out the MAC address for the next hop
L3 device, and the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -