📄 rfc2814.txt
字号:
Network Working Group R. Yavatkar
Request for Comments: 2814 Intel
Category: Standards Track D. Hoffman
Teledesic
Y. Bernet
Microsoft
F. Baker
Cisco
M. Speer
Sun Microsystems
May 2000
SBM (Subnet Bandwidth Manager):
A Protocol for RSVP-based Admission Control over IEEE 802-style networks
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document describes a signaling method and protocol for RSVP-
based admission control over IEEE 802-style LANs. The protocol is
designed to work both with the current generation of IEEE 802 LANs as
well as with the recent work completed by the IEEE 802.1 committee.
1. Introduction
New extensions to the Internet architecture and service models have
been defined for an integrated services Internet [RFC-1633, RFC-2205,
RFC-2210] so that applications can request specific qualities or
levels of service from an internetwork in addition to the current IP
best-effort service. These extensions include RSVP, a resource
reservation setup protocol, and definition of new service classes to
be supported by Integrated Services routers. RSVP and service class
definitions are largely independent of the underlying networking
technologies and it is necessary to define the mapping of RSVP and
Integrated Services specifications onto specific subnetwork
technologies. For example, a definition of service mappings and
Yavatkar, et al. Standards Track [Page 1]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
reservation setup protocols is needed for specific link-layer
technologies such as shared and switched IEEE-802-style LAN
technologies.
This document defines SBM, a signaling protocol for RSVP-based
admission control over IEEE 802-style networks. SBM provides a
method for mapping an internet-level setup protocol such as RSVP onto
IEEE 802 style networks. In particular, it describes the operation
of RSVP-enabled hosts/routers and link layer devices (switches,
bridges) to support reservation of LAN resources for RSVP-enabled
data flows. A framework for providing Integrated Services over
shared and switched IEEE-802-style LAN technologies and a definition
of service mappings have been described in separate documents [RFC-
FRAME, RFC-MAP].
2. Goals and Assumptions
The SBM (Subnet Bandwidth Manager) protocol and its use for admission
control and bandwidth management in IEEE 802 level-2 networks is
based on the following architectural goals and assumptions:
I. Even though the current trend is towards increased use of
switched LAN topologies consisting of newer switches that support
the priority queuing mechanisms specified by IEEE 802.1p, we
assume that the LAN technologies will continue to be a mix of
legacy shared/ switched LAN segments and newer switched segments
based on IEEE 802.1p specification. Therefore, we specify a
signaling protocol for managing bandwidth over both legacy and
newer LAN topologies and that takes advantage of the additional
functionality (such as an explicit support for different traffic
classes or integrated service classes) as it becomes available in
the new generation of switches, hubs, or bridges. As a result,
the SBM protocol would allow for a range of LAN bandwidth
management solutions that vary from one that exercises purely
administrative control (over the amount of bandwidth consumed by
RSVP-enabled traffic flows) to one that requires cooperation (and
enforcement) from all the end-systems or switches in a IEEE 802
LAN.
II. This document specifies only a signaling method and protocol
for LAN-based admission control over RSVP flows. We do not define
here any traffic control mechanisms for the link layer; the
protocol is designed to use any such mechanisms defined by IEEE
802. In addition, we assume that the Layer 3 end-systems (e.g., a
host or a router) will exercise traffic control by policing
Integrated Services traffic flows to ensure that each flow stays
within its traffic specifications stipulated in an earlier
reservation request submitted for admission control. This then
Yavatkar, et al. Standards Track [Page 2]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
allows a system using SBM admission control combined with per flow
shaping at end systems and IEEE-defined traffic control at link
layer to realize some approximation of Controlled Load (and even
Guaranteed) services over IEEE 802-style LANs.
III. In the absence of any link-layer traffic control or priority
queuing mechanisms in the underlying LAN (such as a shared LAN
segment), the SBM-based admission control mechanism only limits
the total amount of traffic load imposed by RSVP-enabled flows on
a shared LAN. In such an environment, no traffic flow separation
mechanism exists to protect the RSVP-enabled flows from the best-
effort traffic on the same shared media and that raises the
question of the utility of such a mechanism outside a topology
consisting only of 802.1p-compliant switches. However, we assume
that the SBM-based admission control mechanism will still serve a
useful purpose in a legacy, shared LAN topology for two reasons.
First, assuming that all the nodes that generate Integrated
Services traffic flows utilize the SBM-based admission control
procedure to request reservation of resources before sending any
traffic, the mechanism will restrict the total amount of traffic
generated by Integrated Services flows within the bounds desired
by a LAN administrator (see discussion of the NonResvSendLimit
parameter in Appendix C). Second, the best-effort traffic
generated by the TCP/IP-based traffic sources is generally rate
adaptive (using a TCP-style "slow start" congestion avoidance
mechanism or a feedback-based rate adaptation mechanism used by
audio/video streams based on RTP/RTCP protocols) and adapts to
stay within the available network bandwidth. Thus, the
combination of admission control and rate adaptation should avoid
persistent traffic congestion. This does not, however, guarantee
that non-Integrated-Services traffic will not interfere with the
Integrated Services traffic in the absence of traffic control
support in the underlying LAN infrastructure.
3. Organization of the rest of this document
The rest of this document provides a detailed description of the
SBM-based admission control procedure(s) for IEEE 802 LAN
technologies. The document is organized as follows:
* Section 4 first defines the various terms used in the document and
then provides an overview of the admission control procedure with
an example of its application to a sample network.
* Section 5 describes the rules for processing and forwarding PATH
(and PATH_TEAR) messages at DSBMs (Designated Subnet Bandwidth
Managers), SBMs, and DSBM clients.
Yavatkar, et al. Standards Track [Page 3]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
* Section 6 addresses the inter-operability issues when a DSBM may
operate in the absence of RSVP signaling at Layer 3 or when
another signaling protocol (such as SNMP) is used to reserve
resources on a LAN segment.
* Appendix A describes the details of the DSBM election algorithm
used for electing a designated SBM on a LAN segment when more than
one SBM is present. It also describes how DSBM clients discover
the presence of a DSBM on a managed segment.
* Appendix B specifies the formats of SBM-specific messages used and
the formats of new RSVP objects needed for the SBM operation.
* Appendix C describes usage of the DSBM to distribute configuration
information to senders on a managed segment.
4. Overview
4.1. Definitions
- Link Layer or Layer 2 or L2: We refer to data-link layer
technologies such as IEEE 802.3/Ethernet as L2 or layer 2.
- Link Layer Domain or Layer 2 domain or L2 domain: a set of nodes
and links interconnected without passing through a L3 forwarding
function. One or more IP subnets can be overlaid on a L2 domain.
- Layer 2 or L2 devices: We refer to devices that only implement
Layer 2 functionality as Layer 2 or L2 devices. These include
802.1D bridges or switches.
- Internetwork Layer or Layer 3 or L3: Layer 3 of the ISO 7 layer
model. This document is primarily concerned with networks that use
the Internet Protocol (IP) at this layer.
- Layer 3 Device or L3 Device or End-Station: these include hosts
and routers that use L3 and higher layer protocols or application
programs that need to make resource reservations.
- Segment: A L2 physical segment that is shared by one or more
senders. Examples of segments include (a) a shared Ethernet or
Token-Ring wire resolving contention for media access using CSMA
or token passing ("shared L2 segment"), (b) a half duplex link
between two stations or switches, (c) one direction of a switched
full-duplex link.
Yavatkar, et al. Standards Track [Page 4]
RFC 2814 SBM (Subnet Bandwidth Manager) May 2000
- Managed segment: A managed segment is a segment with a DSBM
present and responsible for exercising admission control over
requests for resource reservation. A managed segment includes
those interconnected parts of a shared LAN that are not separated
by DSBMs.
- Traffic Class: An aggregation of data flows which are given
similar service within a switched network.
- User_priority: User_priority is a value associated with the
transmission and reception of all frames in the IEEE 802 service
model: it is supplied by the sender that is using the MAC service.
It is provided along with the data to a receiver using the MAC
service. It may or may not be actually carried over the network:
Token-Ring/802.5 carries this value (encoded in its FC octet),
basic Ethernet/802.3 does not, 802.12 may or may not depending on
the frame format in use. 802.1p defines a consistent way to carry
this value over the bridged network on Ethernet, Token Ring,
Demand-Priority, FDDI or other MAC-layer media using an extended
frame format. The usage of user_priority is fully described in
section 2.5 of 802.1D [IEEE8021D] and 802.1p [IEEE8021P] "Support
of the Internal Layer Service by Specific MAC Procedures".
- Subnet: used in this memo to indicate a group of L3 devices
sharing a common L3 network address prefix along with the set of
segments making up the L2 domain in which they are located.
- Bridge/Switch: a layer 2 forwarding device as defined by IEEE
802.1D. The terms bridge and switch are used synonymously in this
document.
- DSBM: Designated SBM (DSBM) is a protocol entity that resides in a
L2 or L3 device and manages resources on a L2 segment. At most one
DSBM exists for each L2 segment.
- SBM: the SBM is a protocol entity that resides in a L2 or L3
device and is capable of managing resources on a segment. However,
only a DSBM manages the resources for a managed segment. When more
than one SBM exists on a segment, one of the SBMs is elected to be
the DSBM.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -