📄 rfc1851.txt
字号:
Network Working Group P. Karn
Request for Comments: 1851 Qualcomm
Category: Experimental P. Metzger
Piermont
W. Simpson
Daydreamer
September 1995
The ESP Triple DES Transform
Status of this Memo
This document defines an Experimental Protocol for the Internet
community. This does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
This document describes the Triple DES-CBC security transform for the
IP Encapsulating Security Payload (ESP).
Table of Contents
1. Introduction .......................................... 2
1.1 Keys ............................................ 2
1.2 Initialization Vector ........................... 2
1.3 Data Size ....................................... 3
1.4 Performance ..................................... 3
2. Payload Format ........................................ 4
3. Algorithm ............................................. 6
3.1 Encryption ...................................... 6
3.2 Decryption ...................................... 7
SECURITY CONSIDERATIONS ...................................... 7
ACKNOWLEDGEMENTS ............................................. 8
REFERENCES ................................................... 9
AUTHOR'S ADDRESS ............................................. 11
Karn, et al Experimental [Page 1]
RFC 1851 ESP 3DES September 1995
1. Introduction
The Encapsulating Security Payload (ESP) [RFC-1827] provides
confidentiality for IP datagrams by encrypting the payload data to be
protected. This specification describes the ESP use of a variant of
of the Cipher Block Chaining (CBC) mode of the US Data Encryption
Standard (DES) algorithm [FIPS-46, FIPS-46-1, FIPS-74, FIPS-81].
This variant, known as Triple DES (3DES), processes each block of the
plaintext three times, each time with a different key [Tuchman79].
This document assumes that the reader is familiar with the related
document "Security Architecture for the Internet Protocol" [RFC-
1825], which defines the overall security plan for IP, and provides
important background for this specification.
1.1. Keys
The secret 3DES key shared between the communicating parties is
effectively 168-bits long. This key consists of three independent
56-bit quantities used by the DES algorithm. Each of the three 56-
bit subkeys is stored as a 64-bit (eight octet) quantity, with the
least significant bit of each octet used as a parity bit.
1.2. Initialization Vector
This mode of 3DES requires an Initialization Vector (IV) that is
eight octets in length.
Each datagram contains its own IV. Including the IV in each datagram
ensures that decryption of each received datagram can be performed,
even when other datagrams are dropped, or datagrams are re-ordered in
transit.
The method for selection of IV values is implementation dependent.
Notes:
A common acceptable technique is simply a counter, beginning with
a randomly chosen value. While this provides an easy method for
preventing repetition, and is sufficiently robust for practical
use, cryptanalysis may use the rare serendipitous occurrence when
a corresponding bit position in the first DES block increments in
exactly the same fashion.
Karn, et al Experimental [Page 2]
RFC 1851 ESP 3DES September 1995
Other implementations exhibit unpredictability, usually through a
pseudo-random number generator. Care should be taken that the
periodicity of the number generator is long enough to prevent
repetition during the lifetime of the session key.
1.3. Data Size
The 3DES algorithm operates on blocks of eight octets. This often
requires padding after the end of the unencrypted payload data.
Both input and output result in the same number of octets, which
facilitates in-place encryption and decryption.
On receipt, if the length of the data to be decrypted is not an
integral multiple of eight octets, then an error is indicated, as
described in [RFC-1825].
1.4. Performance
Three DES-CBC implementations may be pipelined in series to provide
parallel computation. At the time of writing, at least one hardware
implementation can encrypt or decrypt at about 1 Gbps [Schneier94, p.
231].
Karn, et al Experimental [Page 3]
RFC 1851 ESP 3DES September 1995
2. Payload Format
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Security Parameters Index (SPI) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Initialization Vector (IV) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Payload Data ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Padding | Pad Length | Payload Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Security Parameters Index (SPI)
A 32-bit value identifying the Security Parameters for this
datagram. The value MUST NOT be zero.
Initialization Vector (IV)
The size of this field is variable, although it is constant for
all 3DES datagrams of the same SPI and IP Destination. Octets are
sent in network order (most significant octet first) [RFC-1700].
The size MUST be a multiple of 32-bits. Sizes of 32 and 64 bits
are required to be supported. The use of other sizes is beyond
the scope of this specification. The size is expected to be
indicated by the key management mechanism.
When the size is 32-bits, a 64-bit IV is formed from the 32-bit
value followed by (concatenated with) the bit-wise complement of
the 32-bit value. This field size is most common, as it aligns
the Payload Data for both 32-bit and 64-bit processing.
All conformant implementations MUST also correctly process a 64-
bit field size. This provides strict compatibility with existing
hardware implementations.
It is the intent that the value not repeat during the lifetime
of the encryption session key. Even when a full 64-bit IV is
used, the session key SHOULD be changed at least as frequently
as 2**32 datagrams.
Karn, et al Experimental [Page 4]
RFC 1851 ESP 3DES September 1995
Payload Data
The size of this field is variable.
Prior to encryption and after decryption, this field begins with
the IP Protocol/Payload header specified in the Payload Type
field. Note that in the case of IP-in-IP encapsulation (Payload
Type 4), this will be another IP header.
Padding
The size of this field is variable.
Prior to encryption, it is filled with unspecified implementation
dependent (preferably random) values, to align the Pad Length and
Payload Type fields at an eight octet boundary.
After decryption, it MUST be ignored.
Pad Length
This field indicates the size of the Padding field. It does not
include the Pad Length and Payload Type fields. The value
typically ranges from 0 to 7, but may be up to 255 to permit
hiding of the actual data length.
This field is opaque. That is, the value is set prior to
encryption, and is examined only after decryption.
Payload Type
This field indicates the contents of the Payload Data field, using
the IP Protocol/Payload value. Up-to-date values of the IP
Protocol/Payload are specified in the most recent "Assigned
Numbers" [RFC-1700].
This field is opaque. That is, the value is set prior to
encryption, and is examined only after decryption.
For example, when encrypting an entire IP datagram (Tunnel-
Mode), this field will contain the value 4, which indicates
IP-in-IP encapsulation.
Karn, et al Experimental [Page 5]
RFC 1851 ESP 3DES September 1995
3. Algorithm
The 3DES algorithm is a simple variant on the DES-CBC algorithm. The
DES function is replaced by three rounds of that function, an
encryption followed by a decryption followed by an encryption, each
with independant keys, k1, k2 and k3.
Note that when all three keys (k1, k2 and k3) are the same, 3DES is
equivalent to DES-CBC. This property allows the 3DES hardware
implementations to operate in DES mode without modification.
For more explanation and implementation information for Triple DES,
see [Schneier94].
3.1. Encryption
Append zero or more octets of (preferably random) padding to the
plaintext, to make its modulo 8 length equal to 6. For example, if
the plaintext length is 41, 5 octets of padding are added.
Append a Pad Length octet containing the number of padding octets
just added.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -